Skip to main content
Log in

Mercury Concentrations in Four Marine Fishery Resources from Rio de Janeiro Coast, SW Atlantic, and Potential Human Health Risk Via Fish Consumption

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Mercury (Hg) contamination has caused ecological and socioeconomic problems worldwide. One of the main Hg contamination routes by the human populations is through fish ingestion. Herein, we analyzed the total Hg concentrations (THg) in highly consumed marine fish species: Brazilian flathead Percophis brasiliensis, Atlantic bigeye Priacanthus arenatus, Stripped weakfish Cynoscion guatucupa, and Jamaica weakfish C. jamaicensis. The specimens were collected from fishing landings off the Rio de Janeiro, SW Atlantic. Additionally, we calculate the estimated weekly intakes (EWI) and the maximum amount of fish (MAF) that can be safely ingested, both based on the provisional tolerable weekly intake (PTWI). The highest THg concentrations were recorded in P. brasiliensis with a mean of 340.59 μg/kg (dry weight) and the lowest in P. arenatus (115.75 μg/kg). THg concentrations were positively related to the δ15N ratios indicating an increase in contamination with trophic level. All samples showed THg concentrations below the established limits by Brazilian and international regulation. Hg intake via human fish consumption does not exceed the PTWI. The EWI varied from 1.41% (P. arenatus size class I) to 11.52% (P. brasiliensis class II) of the PTWI, while the estimated EWI for “fish consumers” varied between 8.35 and 68.07% PTWI. The MAF estimated for an adult (70 kg) could safely consume between 1277.85 and 7075.50 g/week. This study is an important baseline for monitoring and future comparisons. Therefore, it is important to maintain monitoring of mercury levels in fish species in different marine regions, especially those species most consumed by humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Raw data are available upon request.

References

  1. Stopford W, Goldwater LJ (1975) Methylmercury in the environment: a review of current understanding. Environ Health Perspect 12:115–118. https://doi.org/10.1289/ehp.7512115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cossa D, Averty B, Pirrone N (2009) The origin of methylmercury in open mediterranean waters. Limnol Oceanogr 54:837–844. https://doi.org/10.4319/lo.2009.54.3.0837

    Article  CAS  Google Scholar 

  3. Kumagai M, Nishimura H (1978) Mercury distribution in seawater in Minamata Bay and the origin of particulate mercury. J Oceanogr Soc Jpn 34:50–56. https://doi.org/10.1007/BF02108658

    Article  CAS  Google Scholar 

  4. Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res 77:73–78. https://doi.org/10.1006/enrs.1998.3828

    Article  CAS  PubMed  Google Scholar 

  5. Selin NE (2010) Global biogeochemical cycling of mercury: a review. Ssrn. 34:43–63. https://doi.org/10.1146/annurev.environ.051308.084314

    Article  Google Scholar 

  6. Díez S (2008) Human health effects of methylmercury exposure. Rev Environ Contam Toxicol 198:111–132. https://doi.org/10.1007/978-0-387-09647-6

    Article  Google Scholar 

  7. Castoldi AF, Coccini T, Manzo L (2003) Neurotoxic and molecular effects of methylmercury in humans. Rev Environ Health 18:19–31. https://doi.org/10.1515/REVEH.2003.18.1.19

    Article  PubMed  Google Scholar 

  8. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury — current exposures and clinical manifestations. N Engl J Med 349:1731–1737. https://doi.org/10.1056/NEJMra022471

    Article  CAS  PubMed  Google Scholar 

  9. Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Mar Pollut Bull 45:46–52. https://doi.org/10.1016/S0025-326X(01)00323-X

    Article  CAS  PubMed  Google Scholar 

  10. Agusa T, Kunito T, Sudaryanto A, Monirith I, Kan-Atireklap S, Iwata H, Ismail A, Sanguansin J, Muchtar M, Tana TS, Tanabe S (2007) Exposure assessment for trace elements from consumption of marine fish in Southeast Asia. Environ Pollut 145:766–777. https://doi.org/10.1016/j.envpol.2006.04.034

    Article  CAS  PubMed  Google Scholar 

  11. Connell DW (1989) Biomagnification by aquatic organisms - a proposal. Chemosphere 19:1573–1584

    Article  CAS  Google Scholar 

  12. Mason RP, Sheu G-R (2002) Role of the ocean in the global mercury cycle. Glob Biogeochem Cycles 16:40-1–40–14. https://doi.org/10.1029/2001GB001440

    Article  CAS  Google Scholar 

  13. Tollefson L, Cordle F (1986) Methylmercury in fish: a review of residue levels, fish consumption and regulatory action in the United States. 68:203–208

  14. FAO (2018) The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals

  15. Rodriguez MR, Rodriguez MR, Suslick SB (2009) An overview of Brazilian petroleum exploration lease auctions. Terrae 6:6–20. https://doi.org/10.1111/jce.12587.K

    Article  Google Scholar 

  16. Bruhn CHL, Gomes JAT, Del Lucchese C, Johann PRS (2003) Campos Basin: reservoir characterization and management - historical overview and future challenges. Offshore Technol Conf. https://doi.org/10.4043/15220-MS

  17. Molisani MM, De Assis EF, De Lacerda LD, De Rezende CE (2013) Emissões naturais e antrópicas de nitrogênio, fósforo e metais para a bacia do rio Macaé (Macaé, RJ, Brasil) sob influência das atividades de exploração de petroleo e gás na Bacia de Campos. Quim Nova 36:27–33. https://doi.org/10.1590/S0100-40422013000100006

    Article  CAS  Google Scholar 

  18. Santiago IU, Molisani MM, Nudi AH, Scofield AL, Wagener ALR, Limaverde Filho AM (2016) Hydrocarbons and trace metals in mussels in the Macaé coast: preliminary assessment for a coastal zone under influence of offshore oil field exploration in southeastern Brazil. Mar Pollut Bull 103:349–353. https://doi.org/10.1016/j.marpolbul.2015.12.034

    Article  CAS  PubMed  Google Scholar 

  19. Lacerda LD, Rezende CE, Ovalle ARC, Carvalho CEV (2004) Mercury distribution in continental shelf sediments from two offshore oil fields in southeastern Brazil. Bull Environ Contam Toxicol 72:178–185. https://doi.org/10.1007/s00128-003-0257-0

    Article  CAS  PubMed  Google Scholar 

  20. Souza TA, Godoy JM, Godoy MLDP, Moreira I, Carvalho ZL, Salomão MSMB, Rezende CE (2010) Use of multitracers for the study of water mixing in the Paraíba do Sul River estuary. J Environ Radioact 101:564–570. https://doi.org/10.1016/j.jenvrad.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  21. Lacerda LD, Carvalho CEV, Rezende CE, Pfeiffer WC (1993) Mercury in sediments from the Paraíba do Sul River continental shelf, S.E. Brazil. Mar Pollut Bull 26:220–222. https://doi.org/10.1016/0025-326X(93)90626-U

    Article  CAS  Google Scholar 

  22. Araujo BF, Hintelmann H, Dimock B, Almeida MG, Rezende CE (2017) Concentrations and isotope ratios of mercury in sediments from shelf and continental slope at Campos Basin near Rio de Janeiro, Brazil. Chemosphere 178:42–50. https://doi.org/10.1016/j.chemosphere.2017.03.056

    Article  CAS  PubMed  Google Scholar 

  23. Vianna M (2009) Diagnóstico da cadeia produtiva de pesca marítima no Estado do Rio de Janeiro: relatório de pesquisa 200

  24. Di Beneditto APM (2001) A pesca artesanal na costa norte do Rio de Janeiro. Bioikos 15:103–107

    Google Scholar 

  25. FIPERJ (2018) Projeto de Monitoramento da Atividade Pesqueira no Norte Fluminense (PMAP-RJ): Dados de produção pesqueira marinha - Junho a dezembro de 2017. Rio e Janeiro

  26. Valentin JL, Andre DL, Jacob SA (1987) Hydrobiology in the Cabo Frio (Brazil) upwelling: two-dimensional structure and variability during a wind cycle. Cont Shelf Res 7:77–88. https://doi.org/10.1016/0278-4343(87)90065-3

    Article  Google Scholar 

  27. Valentin JL, Monteiro-Ribas WM (1993) Zooplankton community structure on the east-southeast Brazilian continental shelf (18-23°S latitude). Cont Shelf Res 13:407–424. https://doi.org/10.1016/0278-4343(93)90058-6

    Article  Google Scholar 

  28. Bastos WR, Malm O, Pfeiffer WC, Cleary D (1998) Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon, Brazil. Ciênc cult (Säo Paulo):255–260

  29. Levin LA, Currin C (2012) Stable isotope protocols: sampling and sample processing. San Diego

  30. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320. https://doi.org/10.1146/annurev.es.18.110187.001453

    Article  Google Scholar 

  31. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. https://doi.org/10.1007/s00265-010-1029-6

    Article  Google Scholar 

  32. Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data, 1st edn. Springer US, New York

    Google Scholar 

  33. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R, 1st edn. Springer Science+Business Media, New York

    Book  Google Scholar 

  34. Pinheiro J, Bates D, DebRoy S et al (2020) nlme: linear and nonlinear mixed effects models. R Package 3.1-144:1–335

    Google Scholar 

  35. Barton K (2018) Mu-MIn: Multi-model inference. R Package 1.42(1):1–74

    Google Scholar 

  36. Wickham H, Winston C (2019) ggplot2: create elegant data visualisations using the grammar of graphics description. R Package 3.2.1:1–227. https://doi.org/10.1093/bioinformatics/btr406

    Article  CAS  Google Scholar 

  37. Commission Regulation (European Commission-EC) (2006) Setting maximum levels for certain contaminants in foodstuffs No 1881/2006 of 19 December 2006. Off J Eur Union 1881:5–24

    Google Scholar 

  38. ANVISA AN de VSM da S (2013) Resolução RDC no 42, de 29 de agosto de 2013. Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos. Diário Of da República Fed do Bras 33–35

  39. Souza-Araujo J, Giarrizzo T, Lima MO, Souza MBG (2016) Mercury and methyl mercury in fishes from Bacajá River (Brazilian Amazon): evidence for bioaccumulation and biomagnification. J Fish Biol 89:249–263. https://doi.org/10.1111/jfb.13027

    Article  CAS  PubMed  Google Scholar 

  40. Malm O, Guimarães JRD, Castro MB et al (1997) Follow-up of mercury levels in fish, human hair and urine in the Madeira and Tapajós basins, Amazon, Brazil. In: Mercury as a global pollutant: human health issues. Springer, Netherlands, pp 45–51

    Chapter  Google Scholar 

  41. Barone G, Storelli A, Garofalo R, et al (2015) Assessment of mercury and cadmium via seafood consumption in Italy: estimated dietary intake (EWI) and target hazard quotient (THQ). https://doi.org/10.1080/19440049.2015.1055594

  42. Sonoda DY, Campos SK, Cyrino JEP, Shirota R (2012) Demand for fisheries products in Brazil. Sci Agric 69:313–319

    Article  Google Scholar 

  43. Alva CV, Mársico ET, de OR Ribeiro R et al (2020) Concentrations and health risk assessment of total mercury in canned tuna marketed in southeast Brazil. J Food Compos Anal 88:103357. https://doi.org/10.1016/j.jfca.2019.103357

    Article  CAS  Google Scholar 

  44. FAO/WHO (2011) Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption. Rome, Food and Agriculture Organization of the United Nations; Geneva, World Health Organization

  45. Ferreira da Silva S, de O Lima M (2020) Mercury in fish marketed in the Amazon Triple Frontier and Health Risk Assessment. Chemosphere 248:125989. https://doi.org/10.1016/j.chemosphere.2020.125989

    Article  CAS  PubMed  Google Scholar 

  46. Ngumbu R, Voegborlo R, Ansah EEK (2016) Health risk analysis of mercury, lead and cadmium in some commercial fish species collected from markets in Monrovia, Liberia. Int J Adv Life Sci Technol 3:1–8. https://doi.org/10.18488/journal.72/2016.3.1/72.1.1.8

    Article  Google Scholar 

  47. Mirlean N, Ferraz AH, Seus-Arrache ER, Andrade CFF, Costa LP, Johannesson KH (2019) Mercury and selenium in the Brazilian subtropical marine products: food composition and safety. J Food Compos Anal 84:103310. https://doi.org/10.1016/j.jfca.2019.103310

    Article  CAS  Google Scholar 

  48. Wang HS, Xu WF, Chen ZJ et al (2013) In vitro estimation of exposure of Hong Kong residents to mercury and methylmercury via consumption of market fishes. J Hazard Mater 248–249:387–393. https://doi.org/10.1109/GEMIC.2016.7461552

    Article  PubMed  Google Scholar 

  49. Chouvelon T, Warnau M, Churlaud C, Bustamante P (2009) Hg concentrations and related risk assessment in coral reef crustaceans, molluscs and fish from New Caledonia. Environ Pollut 157:331–340. https://doi.org/10.1016/j.envpol.2008.06.027

    Article  CAS  PubMed  Google Scholar 

  50. Muto EY, Soares LSH, Sarkis JES, Hortellani MA, Petti MAV, Corbisier TN (2014) Biomagnification of mercury through the food web of the Santos continental shelf, subtropical Brazil. Mar Ecol Prog Ser 512:55–69. https://doi.org/10.3354/meps10892

    Article  CAS  Google Scholar 

  51. Di Beneditto APM, de Souza CMM, Kehrig HA, Rezende CE (2011) Use of multiple tools to assess the feeding preference of coastal dolphins. Mar Biol 158:2209–2217. https://doi.org/10.1007/s00227-011-1726-3

    Article  Google Scholar 

  52. Kehrig HA, Fernandes KWG, Malm O, Seixas TG, Di Beneditto APM, de Souza CMM (2009) Transferência trófica de mercúrio e selênio na costa norte do Rio de Janeiro. Química Nova 32(7):1822–1828

  53. Bisi TL, Lepoint G, Azevedo ADF et al (2012) Trophic relationships and mercury biomagnification in Brazilian tropical coastal food webs. Ecol Indic 18:291–302. https://doi.org/10.1016/j.ecolind.2011.11.015

    Article  CAS  Google Scholar 

  54. da Silva CA, Tessier E, Kütter VT, Wasserman JC, Donard OFX, Silva-Filho EV (2011) Mercury speciation in fish of the Cabo Frio upwelling region, SE-Brazil. Braz J Oceanogr 59(3):259–266

  55. Kütter VT, Mirlean N, Baisch PR et al (2009) Mercury in freshwater, estuarine, and marine fishes from southern Brazil and its ecological implication. Environ Monit Assess 159:35–42. https://doi.org/10.1007/s10661-008-0610-1

    Article  CAS  PubMed  Google Scholar 

  56. Viana F, Huertas R, Danulat E (2005) Heavy metal levels in fish from coastal waters of Uruguay. Arch Environ Contam Toxicol 48:530–537. https://doi.org/10.1007/s00244-004-0100-6

    Article  CAS  PubMed  Google Scholar 

  57. Costa MF, Barbosa SCT, Barletta M, et al (2009) Seasonal differences in mercury accumulation in Trichiurus lepturus ( Cutlassfish ) in relation to length and weight in a northeast Brazilian estuary. 423–430. https://doi.org/10.1007/s11356-009-0120-x

  58. De Castro Rodrigues AP, Maciel PO, Da Silva LCCP et al (2011) Relationship between mercury concentrations in the blood with that in the muscle of four estuarine tropical fish species, Rio de Janeiro state, Brazil. Bull Environ Contam Toxicol 86:357–362. https://doi.org/10.1007/s00128-011-0228-9

    Article  CAS  PubMed  Google Scholar 

  59. Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems - a literature review. Environ Pollut 131:323–336. https://doi.org/10.1016/j.envpol.2004.01.010

    Article  CAS  PubMed  Google Scholar 

  60. Downs SG, Macleod CL, Lester JN (1998) Mercury in precipitation and its relation to bioaccumulation in fish: a literature review. Water Air Soil Pollut 108:149–187

    Article  CAS  Google Scholar 

  61. Morel FMM, Amyot M (2018) The Chemical Cycle and Bioaccumulation of Mercury Author ( s ): François M. M. Morel, Anne M. L. Kraepiel and Marc Amyot Source: Annual Review of Ecology and Systematics, Vol. 29 (1998), pp. 543-566 Published by : Annual Reviews Stable URL: ht. 29:543–566

  62. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351. https://doi.org/10.1016/S0045-6535(99)00283-0

    Article  CAS  PubMed  Google Scholar 

  63. Cardozo ALP, Farias EGG, Rodrigues-filho JL et al (2018) Feeding ecology and ingestion of plastic fragments by Priacanthus arenatus: what’s the fi sheries contribution to the problem ? Mar Pollut Bull 130:19–27. https://doi.org/10.1016/j.marpolbul.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  64. Milessi A, Mari NR (2012) Ecología trófica del pez palo, Percophis brasiliensis (Quoy & Gaimard, 1825) en el ecosistema costero Argentino-Uruguayo (34° S-41° S). Rev Investig y Desarro Pesq 21:61–72

    Google Scholar 

  65. Araújo CVM, Cedeño-macias LA (2016) Heavy metals in yellow fi n tuna ( Thunnus albacares ) and common dolphin fi sh ( Coryphaena hippurus ) landed on the Ecuadorian coast. Sci Total Environ 541:149–154. https://doi.org/10.1016/j.scitotenv.2015.09.090

    Article  CAS  PubMed  Google Scholar 

  66. Marta-Almeida M, Mendes R, Amorim FN, Cirano M, Dias JM (2016) Fundão dam collapse: oceanic dispersion of river Doce after the greatest Brazilian environmental accident. Mar Pollut Bull 112:359–364. https://doi.org/10.1016/j.marpolbul.2016.07.039

    Article  CAS  PubMed  Google Scholar 

  67. Creado ESJ, Helmreich S (2018) A wave of mud: the travel of toxic water, from bento Rodrigues to the Brazilian Atlantic. Rev do Inst Estud Bras 33:–51. https://doi.org/10.11606/issn.2316-901x.v0i69p33-51

  68. Thompson F, de Oliveira BC, Cordeiro MC, Masi BP, Rangel TP, Paz P, Freitas T, Lopes G, Silva BS, S. Cabral A, Soares M, Lacerda D, dos Santos Vergilio C, Lopes-Ferreira M, Lima C, Thompson C, de Rezende CE (2020) Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Sci Total Environ 705:135914. https://doi.org/10.1016/j.scitotenv.2019.135914

    Article  CAS  PubMed  Google Scholar 

  69. Bianchini A (2016) Avaliação do impacto da lama/pluma Samarco sobre os ambientes costeiros e marinhos (ES e BA) com ênfase nas Unidades de Conservação 1a Expedição do Navio de Pesquisa Soloncy Moura do CEPSUL/ICMBio BRASÍLIA. Ministério do Meio Ambiente, Brasília

  70. Segura FR, Nunes EA, Paniz FP, Paulelli ACC, Rodrigues GB, Braga GÚL, dos Reis Pedreira Filho W, Barbosa F Jr, Cerchiaro G, Silva FF, Batista BL (2016) Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environ Pollut 218:813–825. https://doi.org/10.1016/j.envpol.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  71. Hatje V, Pedreira RMA, De Rezende CE et al (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-11143-x

    Article  CAS  Google Scholar 

  72. de O Gomes LE, Correa LB, Sá F et al (2017) The impacts of the Samarco mine tailing spill on the Rio Doce estuary, eastern Brazil. Mar Pollut Bull 120:28–36. https://doi.org/10.1016/j.marpolbul.2017.04.056

    Article  CAS  Google Scholar 

  73. Escobar H (2019) Mystery oil spill threatens marine sanctuary in Brazil. Science (80- ) 366:672. https://doi.org/10.1126/science.366.6466.672

    Article  CAS  Google Scholar 

  74. Magris RA, Giarrizzo T (2020) Mysterious oil spill in the Atlantic Ocean threatens marine biodiversity and local people in Brazil. Mar Pollut Bull 153:110961. https://doi.org/10.1016/j.marpolbul.2020.110961

    Article  CAS  PubMed  Google Scholar 

  75. de O Soares M, Teixeira CEP, Bezerra LEA et al (2020) Oil spill in South Atlantic (Brazil): environmental and governmental disaster. Mar Policy 115:103879. https://doi.org/10.1016/j.marpol.2020.103879

    Article  Google Scholar 

  76. Pandey SK, Kim KH, Yim UH, Jung MC, Kang CH (2009) Airborne mercury pollution from a large oil spill accident on the west coast of Korea. J Hazard Mater 164:380–384. https://doi.org/10.1016/j.jhazmat.2008.07.126

    Article  CAS  PubMed  Google Scholar 

  77. Mustafa AD, Juahir H, Amran MA et al (2015) Oil spill related heavy metal: a review. Malaysian J Anal Sci 19:1348–1360

    Google Scholar 

  78. Sunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM (2009) Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Glob Biogeochem Cycles 23:1–14. https://doi.org/10.1029/2008GB003425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Marcelle Sayuri Okubo, Dr. Janeide Padilha, and Dr. Juliana Souza for the support on the laboratory analyses and to Dr. Ana C. Petry for the help with statistical analysis. We also thank Dr. Tommaso Giarrizzo and Dr. Ryan Andrades for their valuable comments and suggestions.

Funding

This research received support from “Projeto Multipesca,” which is an environmental offset measure established through a Consent Decree/Conduct Adjustment Agreement between Petrorio and the Brazilian Ministry for the Environment, with the Brazilian Biodiversity Fund - FUNBIO as an implementer. A.B.B. received a PhD grant from “Projeto Multipesca” and “Projeto Costões Rochosos,” through the same funding source.

Author information

Authors and Affiliations

Authors

Contributions

Bauer, A.B.: conceptualization, methodology, resources, investigation, formal analysis, visualization, writing—original draft preparation. Paiva, T.C.: methodology, formal analysis, writing—reviewing and editing. Barboza, A.C.M.: formal analysis, writing—reviewing and editing. Malm, O.: funding acquisition, writing—reviewing and editing. Fischer, L.G.: funding acquisition, resources, writing—reviewing and editing.

Corresponding author

Correspondence to Arthur de Barros Bauer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Code Availability

Not applicable.

Ethics Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, A.d., Paiva, T.d., Barboza, C.A.d. et al. Mercury Concentrations in Four Marine Fishery Resources from Rio de Janeiro Coast, SW Atlantic, and Potential Human Health Risk Via Fish Consumption. Biol Trace Elem Res 199, 4772–4781 (2021). https://doi.org/10.1007/s12011-021-02596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02596-3

Keywords

Navigation