Skip to main content

Advertisement

Log in

Effects of Selenium on the Immunotoxicity of Subacute Arsenic Poisoning in Chickens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to determine the effects of selenium on the immune toxicity of subacute arsenic poisoning in chickens. Two hundred 8-day-old broilers were randomly divided into 5 groups: the control group (0.1 mg/kg As + 0.2 mg/kg Se), the As group (3 mg/kg As + 0.2 mg/kg Se), As + Se group I (3 mg/kg As + 5 mg/kg Se), As + Se group II (3 mg/kg As + 10 mg/kg Se), and As + Se group III (3 mg/kg As + 15 mg/kg Se). The conclusions were drawn based on the following measurements: 3.0 mg/kg added to feed led to a decrease in the growth performance of the broilers, reduced the level and conversion rate of ANAE, reduced the blood protein content of the broilers but had no effect on the albumin/globulin ratio, and had an inhibitory effect on erythrocyte immunity. Selenium-added of 5 and 10 mg/kg in daily feed leads to increased growth performance, increases the positive rate and conversion rate of ANAE, increases the hemoglobin content of broilers, and promotes erythrocyte immunity, which indicates that the selenium-added reduces the toxic effects of arsenic; 3.0 mg/kg arsenic with 15 mg/kg selenium had the most severe toxic effects. Fifteen milligrams per kilogram of selenium added in daily feed increases the toxicity of arsenic to broilers. The dose of 10 mg/kg selenium showed the best inhibitory effect on subacute arsenic poisoning in the broilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge M, Liu G, Liu H, Yuan Z, Liu Y (2019) The distributions, contamination status, and health risk assessments of mercury and arsenic in the soils from the Yellow River Delta of China. Environ Sci Pollut Res Int 26(34):35094–35106. https://doi.org/10.1007/s11356-019-06435-w

    Article  CAS  PubMed  Google Scholar 

  2. Shukla R, Sarim KM, Singh DP (2019) Microbe-mediated management of arsenic contamination: current status and future prospects. Environ Sustain 3(1):83–90. https://doi.org/10.1007/s42398-019-00090-0

    Article  CAS  Google Scholar 

  3. Bjorklund G, Tippairote T, Rahaman MS, Aaseth J (2020) Developmental toxicity of arsenic: a drift from the classical dose-response relationship. Arch Toxicol 94(1):67–75. https://doi.org/10.1007/s00204-019-02628-x

    Article  CAS  PubMed  Google Scholar 

  4. Zubair M, Martyniuk CJ (2018) A review on hemato-biochemical, accumulation and patho-morphological responses of arsenic toxicity in ruminants. Toxin Rev 38(3):176–186. https://doi.org/10.1080/15569543.2018.1442347

    Article  CAS  Google Scholar 

  5. Zarei MH, Pourahmad J, Nassireslami E (2019) Toxicity of arsenic on isolated human lymphocytes: the key role of cytokines and intracellular calcium enhancement in arsenic-induced cell death. Main Group Met Chem 42(1):125–134. https://doi.org/10.1515/mgmc-2019-0014

    Article  CAS  Google Scholar 

  6. Benbrahim-Tallaa L, Waalkes MP (2008) Inorganic arsenic and human prostate cancer. Environ Health Perspect 116(2):158–164. https://doi.org/10.1289/ehp.10423

    Article  CAS  PubMed  Google Scholar 

  7. CHANDRA S, SAINI AK, GUPTA AK (2019) Arsenic: a harmful and desecrate compound for the humans. Asian J Pharm Clin Res 12(8):24–28. https://doi.org/10.22159/ajpcr.2019.v12i8.34004

    Article  CAS  Google Scholar 

  8. Bjorklund G, Aaseth J, Chirumbolo S, Urbina MA, Uddin R (2018) Effects of arsenic toxicity beyond epigenetic modifications. Environ Geochem Health 40(3):955–965. https://doi.org/10.1007/s10653-017-9967-9

    Article  CAS  PubMed  Google Scholar 

  9. Zwolak I (2020) The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Res 193(1):44–63. https://doi.org/10.1007/s12011-019-01691-w

    Article  CAS  PubMed  Google Scholar 

  10. Li NY, Sun ZJ, Ansari AR, Cui L, Hu YF, Li ZW, Briens M, Kai L, Sun LH, Karrow NA, Liu HZ (2020) Impact of maternal selenium supplementation from late gestation and lactation on piglet immune function. Biol Trace Elem Res 194(1):159–167. https://doi.org/10.1007/s12011-019-01754-y

    Article  CAS  PubMed  Google Scholar 

  11. Kaur G, Ponomarenko O, Zhou JR, Swanlund DP, Summers KL, Dolgova NV, Antipova O, Pickering IJ, George GN, Leslie EM (2020) Studies of selenium and arsenic mutual protection in human HepG2 cells. Chem Biol Interact 327:109162. https://doi.org/10.1016/j.cbi.2020.109162

    Article  CAS  PubMed  Google Scholar 

  12. Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA (2018) Effects of vitamin E, inorganic selenium, bacterial organic selenium, and their combinations on immunity response in broiler chickens. BMC Vet Res 14(1):249. https://doi.org/10.1186/s12917-018-1578-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184(3):455–465. https://doi.org/10.1677/joe.1.05971

    Article  CAS  PubMed  Google Scholar 

  14. Alcolea V, Perez-Silanes S (2020) Selenium as an interesting option for the treatment of Chagas disease: a review. Eur J Med Chem 206:112673. https://doi.org/10.1016/j.ejmech.2020.112673

    Article  CAS  PubMed  Google Scholar 

  15. Hadrup N, Ravn-Haren G (2020) Acute human toxicity and mortality after selenium ingestion: a review. J Trace Elem Med Biol 58:126435. https://doi.org/10.1016/j.jtemb.2019.126435

    Article  CAS  PubMed  Google Scholar 

  16. Shao Y, Zhao H, Wang Y, Liu J, Li J, Chai H, Xing M (2018) Arsenic and/or copper caused inflammatory response via activation of inducible nitric oxide synthase pathway and triggered heat shock protein responses in testis tissues of chicken. Environ Sci Pollut Res Int 25(8):7719–7729. https://doi.org/10.1007/s11356-017-1042-7

    Article  CAS  PubMed  Google Scholar 

  17. Jalaludeen AM, Lee WY, Kim JH, Jeong HY, Ki KS, Kwon EG, Song H (2015) Therapeutic efficacy of biochanin A against arsenic-induced renal and cardiac damage in rats. Environ Toxicol Pharmacol 39(3):1221–1231. https://doi.org/10.1016/j.etap.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  18. Prasad KS, Selvaraj K (2014) Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes. Biol Trace Elem Res 157(3):275–283. https://doi.org/10.1007/s12011-014-9891-0

    Article  CAS  PubMed  Google Scholar 

  19. Sah S, Vandenberg A, Smits J (2013) Treating chronic arsenic toxicity with high selenium lentil diets. Toxicol Appl Pharmacol 272(1):256–262. https://doi.org/10.1016/j.taap.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  20. Selvaraj V, Yeager-Armstead M, Murray E (2012) Protective and antioxidant role of selenium on arsenic trioxide-induced oxidative stress and genotoxicity in the fish hepatoma cell line PLHC-1. Environ Toxicol Chem 31(12):2861–2869. https://doi.org/10.1002/etc.2022

    Article  CAS  PubMed  Google Scholar 

  21. Feng G, Baohua Q, Lezhi Z (2002) Modern red cell immunology, vol 10. Second Military Medical University Press, Shanghai

    Google Scholar 

  22. Junliang D (2007) Veterinary clinical practice techniques. China Agricultural University Press, Beijing

    Google Scholar 

  23. Yu H, Liu S, Li M, Wu B (2016) Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity. Environ Geochem Health 38(2):339–351. https://doi.org/10.1007/s10653-015-9742-8

    Article  CAS  PubMed  Google Scholar 

  24. Chiocchetti GM, Velez D, Devesa V (2019) Effect of chronic exposure to inorganic arsenic on intestinal cells. J Appl Toxicol 39(6):899–907. https://doi.org/10.1002/jat.3778

    Article  CAS  PubMed  Google Scholar 

  25. Vodela JK, Renden JA, Lens SD et al (1997) Drinking water contaminants (arsenic, cadmium, lead, benzene, and trichloroethylene). 1. Interaction of contaminants with nutritional status on general performance and immune function in broiler chickens. Environ Health 76

  26. Kozul-Horvath CD, Zandbergen F, Jackson BP, Enelow RI, Hamilton JW (2012) Effects of low-dose drinking water arsenic on mouse fetal and postnatal growth and development. PLoS One 7(5):e38249. https://doi.org/10.1371/journal.pone.0038249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Živkov Baloš M, Jakšić S, Ljubojević Pelić D (2019) The role, importance and toxicity of arsenic in poultry nutrition. Worlds Poult Sci J 75(3):375–386. https://doi.org/10.1017/s0043933919000394

    Article  Google Scholar 

  28. Zhao H, He Y, Li S, Sun X, Wang Y, Shao Y, Hou Z, Xing M (2017) Subchronic arsenism-induced oxidative stress and inflammation contribute to apoptosis through mitochondrial and death receptor dependent pathways in chicken immune organs. Oncotarget 8(25):40327–40344. https://doi.org/10.18632/oncotarget.16960

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Zhang Y, Wang W, Li C, Zhang Z (2018) Double-sided personality: effects of arsenic trioxide on inflammation. Inflammation 41(4):1128–1134. https://doi.org/10.1007/s10753-018-0775-x

    Article  CAS  PubMed  Google Scholar 

  30. Zhao B, Xia JJ, Wang LM, Gao C, Li JL, Liu JY, Cheng QJ, Dai C, Ma QL, Qi ZQ, Zhao BH (2018) Immunosuppressive effect of arsenic trioxide on islet xenotransplantation prolongs xenograft survival in mice. Cell Death Dis 9(3):408. https://doi.org/10.1038/s41419-018-0446-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ezeh PC, Lauer FT, MacKenzie D, McClain S, Liu KJ, Hudson LG, Gandolfi AJ, Burchiel SW (2014) Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses humoral immunity in vivo. PLoS One 9(4):e93920. https://doi.org/10.1371/journal.pone.0093920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liao Y-H (2015) Hematological and immunological effects of gallium, indium, and arsenic in light emitting diodes manufacturing workers. Int J Med 3(1). https://doi.org/10.14419/ijm.v3i1.4642

  33. Singh MK, Yadav SS, Yadav RS, Chauhan A, Katiyar D, Khattri S (2015) Protective effect of Emblica-officinalis in arsenic induced biochemical alteration and inflammation in mice. Springerplus 4:438. https://doi.org/10.1186/s40064-015-1227-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chakraborty M, Bhaumik M (2020) Prenatal arsenic exposure interferes in postnatal immunocompetence despite an absence of ongoing arsenic exposure. J Immunotoxicol 17(1):135–143. https://doi.org/10.1080/1547691X.2020.1767238

    Article  CAS  PubMed  Google Scholar 

  35. Yue J, Pengfei S (2013) The effect of arsenic on red blood cell immune function and blood immunoglobulin in chicks. China Natl Poult 06:16–18. https://doi.org/10.16372/j.issn.1004-6364.2013.06.007

    Article  Google Scholar 

  36. Messarah M, Klibet F, Boumendjel A, Abdennour C, Bouzerna N, Boulakoud MS, El Feki A (2012) Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Exp Toxicol Pathol 64(3):167–174. https://doi.org/10.1016/j.etp.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  37. Mahajan L, Verma PK, Raina R, Sood S (2018) Toxic effects of imidacloprid combined with arsenic: oxidative stress in rat liver. Toxicol Ind Health 34(10):726–735. https://doi.org/10.1177/0748233718778993

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Wang P, Xu F, Huang W, Ji Q, Han Y, Shao B, Li Y (2020) Protective effects of lycopene against AFB1-induced erythrocyte dysfunction and oxidative stress in mice. Res Vet Sci 129:103–108. https://doi.org/10.1016/j.rvsc.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  39. Antonio Garcia MT, Herrera Duenas A, Pineda Pampliega J (2013) Hematological effects of arsenic in rats after subchronical exposure during pregnancy and lactation: the protective role of antioxidants. Exp Toxicol Pathol 65(5):609–614. https://doi.org/10.1016/j.etp.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  40. Xu Z, Wang Z, Li JJ, Chen C, Zhang PC, Dong L, Chen JH, Chen Q, Zhang XT, Wang ZL (2013) Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic. Food Chem Toxicol 58:1–7. https://doi.org/10.1016/j.fct.2013.03.048

    Article  CAS  PubMed  Google Scholar 

  41. Коnkov AA, Аmpleeva LV, Polishchuk SD, Churilov GI (2015) Investigation of nano selenium influence on productivity and hematological exponents of broiler chickens. Mod Appl Sci 9(13):36. https://doi.org/10.5539/mas.v9n13p36

    Article  CAS  Google Scholar 

  42. Ivory K, Prieto E, Spinks C, Armah CN, Goldson AJ, Dainty JR, Nicoletti C (2017) Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults. Clin Nutr 36(2):407–415. https://doi.org/10.1016/j.clnu.2015.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Shen Z, Wang C, Li E, Qin JG, Chen L (2019) Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir Sinensis under nitrite stress. Fish Shellfish Immunol 87:22–31. https://doi.org/10.1016/j.fsi.2018.12.076

    Article  CAS  PubMed  Google Scholar 

  44. Rodriguez-Sosa M, Garcia-Montalvo EA, Del Razo LM, Vega L (2013) Effect of selenomethionine supplementation in food on the excretion and toxicity of arsenic exposure in female mice. Biol Trace Elem Res 156(1-3):279–287. https://doi.org/10.1007/s12011-013-9855-9

    Article  CAS  PubMed  Google Scholar 

  45. Song D, Cheng Y, Li X, Wang F, Lu Z, Xiao X, Wang Y (2017) Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS Appl Mater Interfaces 9(17):14724–14740. https://doi.org/10.1021/acsami.7b03377

    Article  CAS  PubMed  Google Scholar 

  46. Valdiglesias V, Pasaro E, Mendez J, Laffon B (2010) In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch Toxicol 84(5):337–351. https://doi.org/10.1007/s00204-009-0505-0

    Article  CAS  PubMed  Google Scholar 

  47. Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ (2014) Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 69:148–158. https://doi.org/10.1016/j.envint.2014.04.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This manuscript was supported by the Visiting Scholar Program sponsored by the China Scholarship Council (201906915019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Deng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to Biological Trace Element Research in October 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Wu, Q., Deng, H. et al. Effects of Selenium on the Immunotoxicity of Subacute Arsenic Poisoning in Chickens. Biol Trace Elem Res 199, 4260–4272 (2021). https://doi.org/10.1007/s12011-020-02558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02558-1

Keywords

Navigation