Skip to main content
Log in

Effect of Iodine and Selenium on Proliferation, Viability, and Oxidative Stress in HTR-8/SVneo Placental Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Adequate maternal micronutrition is vital for placental formation, fetal growth, and development. Oxidative stress adversely affects placental development and function and an association between deficient placental development, oxidative stress, and micronutrient deficiency has been observed. Selenium and iodine are two essential micronutrients with antioxidant properties. Epidemiological studies have shown that poor micronutrient status in pregnant women is associated with a higher incidence of pregnancy complications. The aim of this study was to determine how selenium, iodine, and their combination impact oxidative stress in placental trophoblast cells. HTR8/SVneo extravillous trophoblasts were supplemented with a concentration range of organic and inorganic selenium, potassium iodide, or their combination for 24 h. Oxidative stress was then induced by treating cells with menadione or H2O2 for 24 h. Cell viability and lipid peroxidation as the biomarker of oxidative stress were assessed at 48 h. Both menadione and H2O2 reduced cell viability and increased lipid peroxidation (P < 0.05). Greater cell viability was found in selenium-supplemented cells when compared with vehicle treated cells (P < 0.05). Selenium and iodine supplementation separately or together were associated with lower lipid peroxidation compared with vehicle control (P < 0.05). Supplementation with the combination of selenium and iodine resulted in a greater reduction in lipid peroxidation compared with selenium or iodine alone (P < 0.05). Oxidative stress negatively impacts trophoblast cell survival and cellular integrity. Selenium and iodine protect placental trophoblasts against oxidative stress. Further research is warranted to investigate the molecular mechanisms by which selenium and iodine act in the human placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

Data and material are available for data transparency.

References

  1. Leeson P (2013) Long term cardiovascular outcomes for mother and child. Pregnancy Hypertens 3:60–61

    Article  PubMed  Google Scholar 

  2. Neiger R (2017) Long-term effects of pregnancy complications on maternal health: a review. J Clin Med 6:76

    Article  PubMed Central  CAS  Google Scholar 

  3. Pisaneschi S, Boldrini A, Genazzani AR, Coceani F, Simoncini T (2013) Feto-placental vascular dysfunction as a prenatal determinant of adult cardiovascular disease. Intern Emerg Med 8(Suppl 1):S41–S45

    Article  PubMed  Google Scholar 

  4. Tranquilli AL, Landi B, Giannubilo SR, Sibai BM (2012) Preeclampsia: no longer solely a pregnancy disease. Pregnancy Hypertens 2:350–357

    Article  PubMed  Google Scholar 

  5. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cindrova-Davies T, Spasic-Boskovic O, Jauniaux E, Charnock-Jones DS, Burton GJ (2007) Nuclear factor-kappa B, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress: effects of antioxidant vitamins. Am J Pathol 170:1511–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–1404

    Article  CAS  PubMed  Google Scholar 

  8. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  PubMed  Google Scholar 

  9. Nespolo M (2017) Free radicals in biology and medicine. Fifth Edition. By Barry Halliwell and John M. C. Gutteridge. Oxford University Press, 2015. Pp. xxxviii + 905. Price GBP 70.00 (paperback, ISBN 9780198717485), GBP 125.00 (hardback, ISBN 9780198717478). Acta Crystallogr Sect D 73:384–385

    Article  CAS  Google Scholar 

  10. Jeeva JS, Sunitha J, Ananthalakshmi R, Rajkumari S, Ramesh M, Krishnan R (2015) Enzymatic antioxidants and its role in oral diseases. J Pharm Bioallied Sci 7:S331–S3S3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wessells KR, Young RR, Ferguson EL, Ouedraogo CT, Faye MT, Hess SY (2019) Assessment of dietary intake and nutrient gaps, and development of food-based recommendations, among pregnant and lactating women in Zinder, Niger: an Optifood linear programming analysis. Nutrients 11:72

  12. Mistry HD, Williams PJ (2011) The importance of antioxidant micronutrients in pregnancy. Oxidative Med Cell Longev 2011:1–12

    Article  CAS  Google Scholar 

  13. Jones GD, Droz B, Greve P, Gottschalk P, Poffet D, McGrath SP et al (2017) Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci 114:2848–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN (2010) Structure–function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid Redox Signal 12:839–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S, Lesage J, Tanguy Y, Galas L, Ait-Ali D, Leprince J, Guérineau NC, Elkahloun AG, Fournier A, Vieau D, Vaudry H, Anouar Y (2008) Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J 22:1756–1768

    Article  CAS  PubMed  Google Scholar 

  16. Steinbrenner H, Speckmann B, Klotz L-O (2016) Selenoproteins: antioxidant selenoenzymes and beyond. Arch Biochem Biophys 595:113–119

    Article  CAS  PubMed  Google Scholar 

  17. Arteel GE, Mostert V, Oubrahim H, Briviba K, Abel J, Sies H (1998) Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration. Biol Chem 379:1201–1205

    CAS  PubMed  Google Scholar 

  18. Saito Y, Hayashi T, Tanaka A, Watanabe Y, Suzuki M, Saito E, Takahashi K (1999) Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase: isolation and enzymatic characterization of human selenoprotein P. J Biol Chem 274:2866–2871

    Article  CAS  PubMed  Google Scholar 

  19. Labunskyy VM, Hatfield DL, Gladyshev VN (2007) The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB Life 59:1–5

    Article  CAS  PubMed  Google Scholar 

  20. Zeng H (2009) Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules 14:1263–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zachara BA, Dobrzynski W, Trafikowska U, Szymanski W (2001) Blood selenium and glutathione peroxidases in miscarriage. BJOG 108:244–247

    CAS  PubMed  Google Scholar 

  22. Mistry HD, Wilson V, Ramsay MM, Symonds ME, Broughton PF (2008) Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension 52:881–888

    Article  CAS  PubMed  Google Scholar 

  23. Dobrzynski W, Trafikowska U, Trafikowska A, Pilecki A, Szymanski W, Zachara BA (1998) Decreased selenium concentration in maternal and cord blood in preterm compared with term delivery. Analyst 123:93–97

    Article  CAS  PubMed  Google Scholar 

  24. Orhan H, Onderoglu L, Yucel A, Sahin G (2003) Circulating biomarkers of oxidative stress in complicated pregnancies. Arch Gynecol Obstet 267:189–195

    Article  CAS  PubMed  Google Scholar 

  25. Molnar J, Garamvolgyi Z, Herold M, Adanyi N, Somogyi A, Rigo J Jr (2008) Serum selenium concentrations correlate significantly with inflammatory biomarker high-sensitive CRP levels in Hungarian gestational diabetic and healthy pregnant women at mid-pregnancy. Biol Trace Elem Res 121:16–22

    Article  CAS  PubMed  Google Scholar 

  26. Kilinc M, Guven MA, Ezer M, Ertas IE, Coskun A (2008) Evaluation of serum selenium levels in Turkish women with gestational diabetes mellitus, glucose intolerants, and normal controls. Biol Trace Elem Res 123:35–40

    Article  CAS  PubMed  Google Scholar 

  27. Rayman MP, Bath SC, Westaway J, Williams P, Mao J, Vanderlelie JJ, Perkins AV, Redman CWG (2015) Selenium status in U.K. pregnant women and its relationship with hypertensive conditions of pregnancy. Br J Nutr 113:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tara F, Rayman MP, Boskabadi H, Ghayour-Mobarhan M, Sahebkar A, Yazarlu O, Ouladan S, Tavallaie S, Azimi-Nezhad M, Shakeri MT, Teymoori MS, Razavi BS, Oladi M, Ferns G (2010) Selenium supplementation and premature (pre-labour) rupture of membranes: a randomised double-blind placebo-controlled trial. J Obstet Gynaecol 30:30–34

    Article  CAS  PubMed  Google Scholar 

  29. Rayman MP, Searle E, Kelly L, Johnsen S, Bodman-Smith K, Bath SC, Mao J, Redman CWG (2014) Effect of selenium on markers of risk of pre-eclampsia in UK pregnant women: a randomised, controlled pilot trial. Br J Nutr 112:99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Azizi F, Sheikholeslam R, Hedayati M, Mirmiran P, Malekafzali H, Kimiagar M, Pajouhi M (2002) Sustainable control of iodine deficiency in Iran: beneficial results of the implementation of the mandatory law on salt iodization. J Endocrinol Investig 25:409–413

    Article  CAS  Google Scholar 

  31. Charlton K, Probst Y, Kiene G (2016) Dietary iodine intake of the Australian population after introduction of a mandatory iodine fortification Programme. Nutrients 8:701

    Article  PubMed Central  CAS  Google Scholar 

  32. Pandav CS, Yadav K, Srivastava R, Pandav R, Karmarkar MG (2013) Iodine deficiency disorders (IDD) control in India. Indian J Med Res 138:418–433

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pearce EN, Andersson M, Zimmermann MB (2013) Global iodine nutrition: where do we stand in 2013? Thyroid 23:523–528

    Article  CAS  PubMed  Google Scholar 

  34. Gizak M. Global Scorecard 2016: moving toward optimal global iodine status. IDD NEWSLETTER2016

  35. AIHW (2016) Monitoring the health impacts of mandatory folic acid and iodine fortification. Cat. No. PHE 208. AIHW, Canberra

    Google Scholar 

  36. Borekci B, Gulaboglu M, Gul M (2009) Iodine and magnesium levels in maternal and umbilical cord blood of preeclamptic and normal pregnant women. Biol Trace Elem Res 129:1–8

    Article  CAS  PubMed  Google Scholar 

  37. Charoenratana C, Leelapat P, Traisrisilp K, Tongsong T (2016) Maternal iodine insufficiency and adverse pregnancy outcomes. Matern Child Nutr 12:680–687

    Article  PubMed  Google Scholar 

  38. Cuellar-Rufino S, Navarro-Meza M, Garcia-Solis P, Xochihua-Rosas I, Arroyo-Helguera O (2017) Iodine levels are associated with oxidative stress and antioxidant status in pregnant women with hypertensive disease. Nutr Hosp 34:661–666

    Article  CAS  PubMed  Google Scholar 

  39. Gulaboglu M, Borekci B, Halici Z (2007) Placental tissue iodine level and blood magnesium concentration in pre-eclamptic and normal pregnancy. Int J Gynaecol Obstet 98:100–104

    Article  CAS  PubMed  Google Scholar 

  40. Dillon JC, Milliez J (2000) Reproductive failure in women living in iodine deficient areas of West Africa. BJOG 107:631–636

    Article  CAS  PubMed  Google Scholar 

  41. Vidal ZE, Rufino SC, Tlaxcalteco EH, Trejo CH, Campos RM, Meza MN et al (2014) Oxidative stress increased in pregnant women with iodine deficiency. Biol Trace Elem Res 157:211–217

    Article  CAS  PubMed  Google Scholar 

  42. Venturi S, Venturi M (2014) Iodine, PUFAs and iodolipids in health and diseases: an evolutionary perspective. In: Human evolution 29(1–3):185–205

  43. Elstner EF, Adamczyk R, Kroner R, Furch A (1985) The uptake of potassium iodide and its effect as an antioxidant in isolated rabbit eyes. Ophthalmologica 191:122–126

    Article  CAS  PubMed  Google Scholar 

  44. Rieger G, Winkler R, Buchberger W, Moser M (1995) Iodine distribution in a porcine eye model following iontophoresis. Ophthalmologica 209:84–87

    Article  CAS  PubMed  Google Scholar 

  45. Venturi S, Donati FM, Venturi A, Venturi M, Grossi L, Guidi A (2000) Role of iodine in evolution and carcinogenesis of thyroid, breast and stomach. Adv Clin Pathol 4:11–17

    CAS  Google Scholar 

  46. Smyth PP (2003) Role of iodine in antioxidant defence in thyroid and breast disease. Biofactors 19:121–130

    Article  CAS  PubMed  Google Scholar 

  47. Maier J, van Steeg H, van Oostrom C, Paschke R, Weiss RE, Krohn K (1773) Iodine deficiency activates antioxidant genes and causes DNA damage in the thyroid gland of rats and mice. Biochim Biophys Acta 2007:990–999

    Google Scholar 

  48. Jain RM, Bulakh PM (2003) Effect of ketoacids on H(2)O(2) induced cataract. Indian J Clin Biochem 18:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muranov K, Poliansky N, Winkler R, Rieger G, Schmut O, Horwath-Winter J (2004) Protection by iodide of lens from selenite-induced cataract. Graefes Arch Clin Exp Ophthalmol 242:146–151

  50. Venturi S (2001) Is there a role for iodine in breast diseases? Breast 10:379–382

    Article  CAS  PubMed  Google Scholar 

  51. Huang SA, Dorfman DM, Genest DR, Salvatore D, Larsen PR (2003) Type 3 iodothyronine deiodinase is highly expressed in the human uteroplacental unit and in fetal epithelium. J Clin Endocrinol Metab 88:1384–1388

    Article  CAS  PubMed  Google Scholar 

  52. Asemi Z, Jamilian M, Mesdaghinia E, Esmaillzadeh A (2015) Effects of selenium supplementation on glucose homeostasis, inflammation, and oxidative stress in gestational diabetes: randomized, double-blind, placebo-controlled trial. Nutrition 31:1235–1242

    Article  CAS  PubMed  Google Scholar 

  53. Hamdan HZ, Elbashir LM, Hamdan SZ, Elhassan EM, Adam I (2014) Zinc and selenium levels in women with gestational diabetes mellitus at Medani hospital, Sudan. J Obstet Gynaecol 34:567–570

    Article  CAS  PubMed  Google Scholar 

  54. Pan Z, Cui T, Chen W, Gao S, Pearce EN, Wang W, Chen Y, Guo W, Tan L, Shen J, Zhang W (2019) Serum iodine concentration in pregnant women and its association with urinary iodine concentration and thyroid function. Clin Endocrinol 90:711–718

    Article  CAS  Google Scholar 

  55. Wilson RL, Bianco-Miotto T, Leemaqz SY, Grzeskowiak LE, Dekker GA, Roberts CT (2018) Early pregnancy maternal trace mineral status and the association with adverse pregnancy outcome in a cohort of Australian women. J Trace Elem Med Biol 46:103–109

    Article  CAS  PubMed  Google Scholar 

  56. Khera A, Dong LF, Holland O, Vanderlelie J, Pasdar EA, Neuzil J, Perkins AV (2015) Selenium supplementation induces mitochondrial biogenesis in trophoblasts. Placenta 36:863–869

    Article  CAS  PubMed  Google Scholar 

  57. Khera A, Vanderlelie JJ, Perkins AV (2013) Selenium supplementation protects trophoblast cells from mitochondrial oxidative stress. Placenta 34:594–598

    Article  CAS  PubMed  Google Scholar 

  58. Radenkovic F, Holland O, Vanderlelie JJ, Perkins AV (2017) Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation. Biochem Pharmacol 146:42–52

    Article  CAS  PubMed  Google Scholar 

  59. Watson M, van Leer L, Vanderlelie JJ, Perkins AV (2012) Selenium supplementation protects trophoblast cells from oxidative stress. Placenta 33:1012–1019

    Article  CAS  PubMed  Google Scholar 

  60. Rayman MP, Wijnen H, Vader H, Kooistra L, Pop V (2011) Maternal selenium status during early gestation and risk for preterm birth. CMAJ 183:549–555

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rayman MP, Bode P, Redman CW (2003) Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am J Obstet Gynecol 189:1343–1349

    Article  CAS  PubMed  Google Scholar 

  62. Tan M, Sheng L, Qian Y, Ge Y, Wang Y, Zhang H, Jiang M, Zhang G (2001) Changes of serum selenium in pregnant women with gestational diabetes mellitus. Biol Trace Elem Res 83:231–237

    Article  CAS  PubMed  Google Scholar 

  63. Al-Kunani AS, Knight R, Haswell SJ, Thompson JW, Lindow SW (2001) The selenium status of women with a history of recurrent miscarriage. BJOG 108:1094–1097

    CAS  PubMed  Google Scholar 

  64. Al-Saleh E, Nandakumaran M, Al-Shammari M, Al-Harouny A (2004) Maternal-fetal status of copper, iron, molybdenum, selenium and zinc in patients with gestational diabetes. J Matern Fetal Neonatal Med 16:15–21

    Article  CAS  PubMed  Google Scholar 

  65. Bo S, Lezo A, Menato G, Gallo ML, Bardelli C, Signorile A, Berutti C, Massobrio M, Pagano GF (2005) Gestational hyperglycemia, zinc, selenium, and antioxidant vitamins. Nutrition 21:186–191

    Article  CAS  PubMed  Google Scholar 

  66. Atamer Y, Kocyigit Y, Yokus B, Atamer A, Erden AC (2005) Lipid peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia. Eur J Obstet Gynecol Reprod Biol 119:60–66

    Article  CAS  PubMed  Google Scholar 

  67. Olivo-Vidal ZE, Rodriguez RC, Arroyo-Helguera O (2016) Iodine affects differentiation and migration process in trophoblastic cells. Biol Trace Elem Res 169:180–188

    Article  CAS  PubMed  Google Scholar 

  68. la Pena S, Isela SR, Zendy OV, Monica NM, Irene XR, Omar AH (2018) Changes in trophoblasts gene expression in response to perchlorate exposition. Toxicol in Vitro 50:328–335

    Article  CAS  Google Scholar 

Download references

Funding

This research has been supported by National Health and Medical Research Council (NHMRC) GNT1161079 Targeting micronutrients to tackle pregnancy disorders: an integrated approach awarded to CTR, SJZ, AVP, SYL and TBM. CTR is supported by a NHMRC Investigator Grant GNT1174971 and a Flinders University Matthew Flinders Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Bianco-Miotto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, N., Jankovic-Karasoulos, T., Leemaqz, S.YL. et al. Effect of Iodine and Selenium on Proliferation, Viability, and Oxidative Stress in HTR-8/SVneo Placental Cells. Biol Trace Elem Res 199, 1332–1344 (2021). https://doi.org/10.1007/s12011-020-02277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02277-7

Keywords

Navigation