Skip to main content
Log in

Zinc l-Carnosine Protects CCD-18co Cells from l-Buthionine Sulfoximine–Induced Oxidative Stress via the Induction of Metallothionein and Superoxide Dismutase 1 Expression

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc l-carnosine (ZnC) is the chelate form of zinc and l-carnosine and is one of the zinc supplements available in the market. This study aims to determine the protective effects of ZnC against l-buthionine sulfoximine (BSO)–induced oxidative stress in CCD-18co human normal colon fibroblast cell line. CCD-18co cells were pretreated with ZnC (0–100 μM) for 24 h before the induction of oxidative stress by BSO (1 mM) for another 24 h. Results from this present study demonstrated that ZnC up to the concentration of 100 μM was not cytotoxic to CCD-18co cells. Induction with BSO significantly increased the intracellular reactive oxygen species (ROS) levels and reduced the intracellular glutathione (GSH) levels in CCD-18co cells. Pretreatment with ZnC was able to attenuate the increment in intracellular ROS level in CCD-18co cells significantly in a concentration-dependent manner. However, ZnC did not have any effects on intracellular GSH levels and Nrf2 activation. Mechanistically, pretreatment with ZnC was able to upregulate the expression of metallothionein (MT) and superoxide dismutase 1 (SOD1) in CCD-18co cells. Results from dual-luciferase reporter gene assay reported that ZnC was able to increase the MRE-mediated relative luciferase activities in a concentration-dependent manner, suggesting that the induction of MT expression by ZnC was due to the activation of MTF-1 signaling pathway. Taken together, our current findings suggest that ZnC can protect CCD-18co cells from BSO-induced oxidative stress via the induction of MT and SOD1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30(1–2):42–59

    CAS  Google Scholar 

  2. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153

    CAS  PubMed  Google Scholar 

  3. Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30(1–2):1–12

    CAS  Google Scholar 

  4. Aquilano K, Baldelli S, Ciriolo MR (2014) Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol 5:196

    PubMed  PubMed Central  Google Scholar 

  5. Griffith OW, Anderson ME, Meister A (1979) Inhibition of glutathione biosynthesis by prothionine sulfoximine (S-n-propyl homocysteine sulfoximine), a selective inhibitor of y-glutamylcysteine synthetase. J Biol Chem 254:1205–1210

    CAS  PubMed  Google Scholar 

  6. Chen J, Small-Howard A, Yin A, Berry MJ (2005) The responses of Ht22 cells to oxidative stress induced by buthionine sulfoximine (BSO). BMC Neurosci 6:10

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gokce G, Ozsarlak-Sozer G, Oktay G, Kirkali G, Jaruga P, Dizdaroglu M, Kerry Z (2009) Glutathione depletion by buthionine sulfoximine induces oxidative damage to DNA in organs of rabbits in vivo. Biochemistry 48(22):4980–4987

    CAS  PubMed  Google Scholar 

  8. Watanabe T, Sagisaka H, Arakawa S, Shibaya Y, Watanabe M, Igarashi I, Tanaka K, Totsuka S, Takasaki W, Manabe S (2003) A novel model of continuous depletion of glutathione in mice treated with L-buthionine (S,R)-sulfoximine. J Toxicol Sci 28(5):455–469

    CAS  PubMed  Google Scholar 

  9. Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8(6):385–387

    PubMed  Google Scholar 

  10. Hales BF, Brown H (1991) The effect of in vivo glutathione depletion with buthionine sulfoximine on rat embryo development. Teratology 44(3):251–257

    CAS  PubMed  Google Scholar 

  11. Meister A (1991) Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther 51(2):155–194

    CAS  PubMed  Google Scholar 

  12. Anderson CP, Matthay KK, Perentesis JP, Neglia JP, Bailey HH, Villablanca JG, Groshen S, Hasenauer B, Maris JM, Seeger RC, Reynolds CP (2015) Pilot study of intravenous melphalan combined with continuous infusion L-S,R-buthionine sulfoximine for children with recurrent neuroblastoma. Pediatr Blood Cancer 62(10):1739–1746

    CAS  PubMed  Google Scholar 

  13. Lewis-Wambi JS, Kim HR, Wambi C, Patel R, Pyle JR, Klein-Szanto AJ, Jordan VC (2008) Buthionine sulfoximine sensitizes antihormone-resistant human breast cancer cells to estrogen-induced apoptosis. Breast Cancer Res 10(6):R104

    PubMed  PubMed Central  Google Scholar 

  14. Li Q, Yin X, Wang W, Zhan M, Zhao B, Hou Z, Wang J (2016) The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine. Oncol Lett 11(1):474–480

    CAS  PubMed  Google Scholar 

  15. Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125(10–11):811–826

    CAS  PubMed  Google Scholar 

  16. Gil del Valle L (2011) Oxidative stress in aging: theoretical outcomes and clinical evidences in humans. Biomed Aging Pathol 1(1):1–7

    CAS  Google Scholar 

  17. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711(1–2):193–201

    CAS  PubMed  Google Scholar 

  18. Matsukura T, Tanaka H (2000) Applicability of zinc complex of L-carnosine for medical use. Biochemistry (Mosc) 65(7):817–823

  19. Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93(4):1803–1845

    CAS  PubMed  Google Scholar 

  20. Salgueiro MJ, Zubillaga M, Lysionek A, Sarabia MI, Caro R, De Paoli T, Hager A, Weill R, Boccio J (2000) Zinc as an essential micronutrient: a review. Nutr Res 20(5):737–755

    CAS  Google Scholar 

  21. Choi HS, Lim JY, Chun HJ, Lee M, Kim ES, Keum B, Seo YS, Jeen YT, Um SH, Lee HS, Kim CD, Ryu HS, Sul D (2013) The effect of polaprezinc on gastric mucosal protection in rats with ethanol-induced gastric mucosal damage: comparison study with rebamipide. Life Sci 93(2–3):69–77

    CAS  PubMed  Google Scholar 

  22. Ito M, Shii D, Segami T, Kojima R, Suzuki Y (1992) Preventive actions of N-(3-aminopropionyl)-L-histidinato zinc (Z-103) through increases in the activities of oxygen-derived free radical scavenging enzymes in the gastric mucosa on ethanol-induced gastric mucosal damage in rats. Jpn J Pharmacol 59(3):267–274

    CAS  PubMed  Google Scholar 

  23. Ohkawara T, Nishihira J, Nagashima R, Takeda H, Asaka M (2006) Polaprezinc protects human colon cells from oxidative injury induced by hydrogen peroxide: relevant to cytoprotective heat shock proteins. World J Gastroenterol 12(38):6178–6181

  24. Ooi TC, Mohammad NH, Sharif R (2014) Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression. Biol Trace Elem Res 162(1–3):8–17

    CAS  PubMed  Google Scholar 

  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1):55–63

    CAS  Google Scholar 

  26. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72

  27. Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1(6):3159–3165

    CAS  PubMed  Google Scholar 

  28. He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553

    PubMed  Google Scholar 

  29. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 122:877–902

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44

    CAS  PubMed  Google Scholar 

  31. Cortese MM, Suschek CV, Wetzel W, Kroncke KD, Kolb-Bachofen V (2008) Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med 44(12):2002–2012

    CAS  PubMed  Google Scholar 

  32. Ha K-N, Chen Y, Cai J, Sternberg JP (2006) Increased glutathione synthesis through an ARE-Nrf2–dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci 47(6):2709–2715

    PubMed  Google Scholar 

  33. Smith AF, Loo G (2012) Upregulation of haeme oxygenase-1 by zinc in HCT-116 cells. Free Radic Res 46(9):1099–1107

    CAS  PubMed  Google Scholar 

  34. Zhao Y, Tan Y, Dai J, Li B, Guo L, Cui J, Wang G, Shi X, Zhang X, Mellen N, Li W, Cai L (2011) Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett 200(1–2):100–106

    CAS  PubMed  Google Scholar 

  35. Sharif R, Thomas P, Zalewski P, Fenech M (2015) Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status. Mol Nutr Food Res 59(6):1200–1212

    CAS  PubMed  Google Scholar 

  36. Pelmenschikov V, Siegbahn PEM (2005) Copper−zinc superoxide dismutase: theoretical insights into the catalytic mechanism. Inorg Chem 44(9):3311–3320

    CAS  PubMed  Google Scholar 

  37. Ighodaro OM, Akinloye OA (2017) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293

  38. Sharif R, Thomas P, Zalewski P, Graham RD, Fenech M (2011) The effect of zinc sulphate and zinc carnosine on genome stability and cytotoxicity in the WIL2-NS human lymphoblastoid cell line. Mutat Res 720(1–2):22–33

    CAS  PubMed  Google Scholar 

  39. Sharif R, Thomas P, Zalewski P, Fenech M (2012) Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells. Genes Nutr 7(2):139–154

    CAS  PubMed  Google Scholar 

  40. Li Y, Maret W (2008) Human metallothionein metallomics. J Anal At Spectrom 23(8):1055

    CAS  Google Scholar 

  41. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14(3):6044–6066

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14(3):325–337

    CAS  PubMed  Google Scholar 

  43. Thornalley PJ, Vasak M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827(1):36–44

    CAS  PubMed  Google Scholar 

  44. Ren J, Privratsky JR, Yang X, Dong F, Carlson EC (2008) Metallothionein alleviates glutathione depletion-induced oxidative cardiomyopathy in murine hearts. Crit Care Med 36(7):2106–2116

    CAS  PubMed  Google Scholar 

  45. Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24(3):411–418

  46. Gunther V, Lindert U, Schaffner W (2012) The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 1823(9):1416–1425

    CAS  PubMed  Google Scholar 

  47. Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14(3–4):223–237

  48. Dong G, Chen H, Qi M, Dou Y, Wang Q (2015) Balance between metallothionein and metal response element binding transcription factor 1 is mediated by zinc ions (review). Mol Med Rep 11(3):1582–1586

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Centre for Research and Instrumentation Management (CRIM), UKM, for providing the gel photo documentation system and flow cytometer facility.

Funding

This study was funded by the Fundamental Research Grant Scheme, Ministry of Education Malaysia (FRGS/1/2013/SKK03/UKM/03/1), and the Universiti Kebangsaan Malaysia (DIP-2012-024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razinah Sharif.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, T.C., Chan, K.M. & Sharif, R. Zinc l-Carnosine Protects CCD-18co Cells from l-Buthionine Sulfoximine–Induced Oxidative Stress via the Induction of Metallothionein and Superoxide Dismutase 1 Expression. Biol Trace Elem Res 198, 464–471 (2020). https://doi.org/10.1007/s12011-020-02108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02108-9

Keywords

Navigation