Skip to main content
Log in

Pb, Cd, and Cu Play a Major Role in Health Risk from Contamination in Duck Meat and Offal for Food Production in Thailand

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc, Pb, Cd, Mn, Fe, Cr, and Cu levels in duck meat from large-scale farms have been found to be significantly higher than those from free-grazing duck farms. Zinc, Co, Mn, Cr, and Cu contamination levels in duck liver from large-scale farms were significantly higher than those from free-grazing farms; only Cd in duck liver from free-grazing farms was higher than in liver samples from large-scale farms at P < 0.05. Lead, Cd, Fe, and Cr levels in duck intestine samples from free-grazing farms were higher than large-scale farms at P < 0.001. Moreover, the average concentrations of Pb in duck meat and liver samples from large-scale farms and Cd levels in duck liver samples from free-grazing farm also exceeded the FAO/WHO and Codex Alimentarius limits by 100% (55/55), 100% (54/54), and 67.6% (23/34), respectively. PCA analysis showed a strong positive relationship between the eight metals in meat, liver, and intestine was > 0.69, > 0.69, and > 0.72, in order. The relationship of the liver combined with the intestine was > 0.65. This study indicated that consumers may incur health risks from long-term consumption of duck due to high Pb and Cd concentrations from both types of farms, particularly from large-scale duck farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tubaro A, Hungerford J (2007) Toxicology of marine toxins, in Gupta R C(ed.) Veterinary Toxicology. Elsevier, Amsterdam, pp 725–752

    Google Scholar 

  2. Farooq M, Faooq A, Rashid U (2008) Appraisal of heavy metal contents in different vegetables grown in the vicinity of an industrial area. Pak J Bot 40:2099–2106

    CAS  Google Scholar 

  3. Ghosh R, Xalxo R, Ghosh M (2013) Estimation of heavy metal in vegetable from different market sites of tribal based Ranchi City though ICP-OES and to assess health risk. Curr W Environ 8:435–444

    CAS  Google Scholar 

  4. Hoffman D, Franson J, Pattee OH, Bunck CM, Murray HC (1985) Biochemical and hematological effects of lead ingestion in nestling American kestrels (Falco sparverius). Comp Biochem Physiol C l80:431–439

    Google Scholar 

  5. Grue CE, Hoffman DJ, Beyer WN, Franson LP (1986) Lead concentrations and reproductive success in European starlings Stunus vulgaris nesting within highway roadside verges. Environ Pollut Ser A Ecol Biol 42:157–182

    CAS  Google Scholar 

  6. Eisler R (1985) Cadmium hazard to fish, wildlife and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Rep., vol. 85(1.2). Washington DC

  7. Cooke JA, Jonnson MS (1996) Cadmium in small mammals. In: Beyer WN, Heina GH, Redmon-Norwood AW (eds) Environmental contaminates in wildlife: interpreting tissue concentrations. Lewis Publ, Boca Raton, pp 377–388

    Google Scholar 

  8. Furness RW (1996) Cadmium in bird. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis Publ, Boca Raton, pp 389–404

    Google Scholar 

  9. Wayland M, Gilchrist HG, Neugebauer E (2005) Concentrations of cadmium, mercury and selenium in common eider ducks in the eastern Canadian arctic: influence of reproductive stage. Sci Total Environ 351-352:323–332

    CAS  PubMed  Google Scholar 

  10. Burger J, Gochfeld M (1991) Cadmium and Lead in common terns (Aves: Sterna hirundo): relationship between levels in parents and eggs. Environ Monit Assess 16:253–258

    CAS  PubMed  Google Scholar 

  11. Burger J (1994) Heavy metals in avian eggshells: another excretion method. J Toxicol Environ Health 41:207–220

    CAS  PubMed  Google Scholar 

  12. Nisianakis P, Gianneas I, Gavriil A, Kontopidis G, Kyriazakis I (2009) Variation in trace element contents among chicken, turkey, duck, goose, and pigeon eggs analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Biol Trace Elem Res 128:62–71

    CAS  PubMed  Google Scholar 

  13. Tsipoura N, Burger J, Newhouse M, Jeitner C, Gochfeldc M, Mizrahi D (2011) Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands. Environ Res 111:775–784

    CAS  PubMed  Google Scholar 

  14. Levengood JM (2003) Cadmium and lead in tissues of mallards (Anas platyrhynchos) and wood ducks (Aix sponsa) using the Illinois River (USA). Environ Pollut 122:177–181

    CAS  PubMed  Google Scholar 

  15. Kim J, Koo TH, Oh JM (2010) Monitoring of heavy metal contamination using tissues of two Ardeids chicks, Korea. B Environ Contam Tox 84:754–758

    CAS  Google Scholar 

  16. Scheuhammer AM (1987) The chronic toxicity aluminium, cadmium, mercury and lead in birds: a review. Environ Pollut 46:263–295

    CAS  PubMed  Google Scholar 

  17. Sileo L, Beyer WN, Mateo R (2003) Pancreatitis in wild zinc poisoned waterfowl. Avian Pathol 32:655–660

    CAS  PubMed  Google Scholar 

  18. Saijuntha W, Duenngai K, Tantrawatpan C (2013) Zoonotic echinostoma infections in free-grazing ducks in Thailand. Korea J Parasitol 51:663–667

    Google Scholar 

  19. Costales A (2004) Livestock Sector Report—Thailand elaborated for the FAO-AGAL. A review of the Thailand poultry sector. IOP Publishing PhysicsWep. http://www.fao.org/ag/againfo/resources/en/publications/sector_reports/lsr_THA.pdf. Accessed 22 June 2019

  20. Gilbert M, Xiao X, Chaitaweesub P, Kalpravidh W, Premashthira S, Boles S, Slingenbergh J (2007) Avian influenza, domestic ducks and rice agriculture in Thailand. Agric Ecosyst Environ 119:409–415

    PubMed  PubMed Central  Google Scholar 

  21. Information and Statistics Department of Livestock (2015) Information livestock farmers duck zone. The fiscal year 2015. IOP Publishing PhysicsWep. http://ict.dld.go.th/th2/images/stories/stat_web/yearly/2558/6.duck_region.pdf, 5. Accessed 10 Jun 2019

  22. Bureau of Product Standards and Quality Systems of National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and Cooperatives (2006) Food consumption data of Thailand. IOP Publishing PhysicsWep http://www.acfs.go.th/document/download_document/FCDT.pdf. Accessed 25 February 2019

  23. Van Ovemerire I, Prussemier L, Hanot V, Temmerman De L, Hoenig M, Goeyens L (2006) Chemical contamination of free-rang eggs from Belgium. Food Addit Contam 23:1109–1122

    Google Scholar 

  24. Giannenas L, Nisianakis P, Gravriil A, Kontopidis G, Kyriazakis I (2009) Trace mineral content of conventional, organic and courtyard eggs analysis by inductively coupled plasma mass spectrometry (ICP-MS). Food Chem 114:706–711

    CAS  Google Scholar 

  25. Holt PS, Davies RH, Dewulf J, Gast RK, Huwe JK, Jones DR, Waltman D, Willian KR (2011) The impact of different housing systems on egg safety and quality. Poul Sci 90:251–261

    CAS  Google Scholar 

  26. Yabe J, Nakayama SMM, Ikenaka K, Muzandu K, Choongo K, Mainda G, Kabeta M, Ishizuka M, Umemura T (2013) Metal distribution in tissues of free-range chickens near a lead–zinc mine in Kabwe, Zambia. Environ Toxicol Chem 32:189–192

    CAS  PubMed  Google Scholar 

  27. Waegeneers N, Steur HD, Temmerman LD, Steenwinkel SV, Gellynck X, Viaene J (2009) Transfer of soil contaminants to home-produced eggs and preventive measures to reduce contamination. Sci Total Environ 407:4438–4446

    CAS  PubMed  Google Scholar 

  28. Binkowski ŁJ (2012) The effect of material preparation on the dry weight used in trace elements determination in biological samples. Fresenius Environ Bull 21:1956–1960

    CAS  Google Scholar 

  29. AOAC (1984) Official Methods of Association of Official Analytical Chemists. AOAC, Washington, DC, p 418

    Google Scholar 

  30. Notification of Ministry of Public Health No.98 (B.E.2529) of Thailand (1986) Prescribing standard of contaminated substances. IOP Publishing PhysicsWep http://www2.fda.moph.go.th/law/Law_Book_1.asp?productcd=3&lawid=300018_098&lawname=NOTIFICATION%20NO.98(B.E.2529)&language=e&Contents=1&v_call=lawlink&historylink=/law&arg_language=eNOTIFICATION%20NO.98(B.E.2529). Accessed 3 October 2019

  31. The European Commission (2006) Commission Regulation (EC) No. 1881/2006. IOP Publishing PhysicsWep https://www.fsai.ie/uploadedFiles/Consol_Reg1881_2006.pdf. Accessed 26 June 2019

  32. FAO/WHO (2002) Codex Alimentarius, Schedule 1 of the proposed draft Codex general standards for contaminants and toxins in food. Joint FAO/WHO Food Standards Programme, Codex Committee, Rotterdam. Reference CX/FAC 02/16. 2002. IOP Publishing PhysicsWep. http://www.fao.org/input/download/report/28/Al03_12e.pdf. Accessed 12 May 2019

  33. Russell LH (1978) Heavy metal in foods of animal origin. Toxicity of Heavy Metals in the Environment. FW. Oehme, ed. Marcel Decker, New York, NY

  34. Lenntech BV Recommended daily intake of vitamins and minerals. IOP Publishing PhysicsWep http://www.lenntech.com/recommended-daily-intake.htm. Accessed 23 May 2019

  35. Aendo P, Netvichian R, Viriyarampa S, Songserm T, Tulayakul P (2018) Comparison of zinc, lead, cadmium, cobalt, manganese, iron, chromium and copper in duck eggs from three duck farm systems in Central and Western, Thailand. Ecotoxicol Environ Saf 161:691–698

    CAS  PubMed  Google Scholar 

  36. Falandysz J (1991) Manganese, copper, zinc, iron, cadmium, mercury and lead in muscle meat, liver and kidneys of poultry, rabbit and sheep slaughtered in the northern part of Poland, 1987. Food Addit Contam 8:71–83

    CAS  PubMed  Google Scholar 

  37. Zahurul Alam Chowdhury M, Abedin Siddique Z, Hossain Afzal SM, Kazi IA, Aminul Ahsan M, Ahmed S, Mahbub Zaman M (2011) Determination of essential and toxic metals in meats, meat products and eggs by spectrophotometric method. J Bang Chem Soci 24:165–172

    Google Scholar 

  38. Kim DG, Kim M, Shin JY, Son SW (2016) Cadmium and lead in animal tissue (muscle, liver and kidney), cow milk and dairy products in Korea. Food Addit Contam Part B Surveill 9:33–37

    CAS  PubMed  Google Scholar 

  39. Kim J, Kim IK, Oh JM (2016) Effect of embedded shot on trace element concentrations in livers of Anseriformes species. Ecotoxicol Environ Saf 134:38–42

    CAS  Google Scholar 

  40. Chen SS, Lin YW, Kao YM, Shih YC (2013) Trace elements and heavy metals in poultry and livestock meat in Taiwan. Food Addit Contam Part B Surveill 6:231–236

    CAS  PubMed  Google Scholar 

  41. Hughes MR, Smits JE, Elliott JE, Bennett DC (2000) Morphological and pathological effects of cadmium ingestion on Pekin ducks exposed to saline. J Toxicol Environ Health A 61:591–608

    CAS  PubMed  Google Scholar 

  42. Romero D, Garicía HA, Tagliati CA, López ME, Fernández GAJ (2009) Cadmium and lead-induced apoptosis in mallard erythrocytes (Anas platyrhynchos). Ecotoxicol Environ Saf 72:37–44

    CAS  PubMed  Google Scholar 

  43. Wren CD, Harris S, Harttrup NA (1995) Ecotoxicology of mercury and cadmium. In: Hoffman DJ, Rattner BA, Buton GA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology. Lewis, Boca Raton, pp 392–423

    Google Scholar 

  44. Nogawa K, Honda R, Kido T, Tsuritani I, Yamada Y, Ishizaki M, Yamaya H (1989) A dose-response analysis of cadmium in the general environment with special reference to total cadmium intake limit. Environ Res 48:7–16

    CAS  PubMed  Google Scholar 

  45. ATSDR (1999) Toxicological profile cadmium. IOP Publishing PhysicsWep http://www.atsdr.cdc.gov. Accessed 3 August 2019

  46. Jiang G, Xu L, Song S, Zhu C, Wu Q, Zhang L, Wu L (2008) Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology 244:49–55

    CAS  PubMed  Google Scholar 

  47. Dharmadasa P, Kim N, Thunders M (2017) Maternal cadmium exposure and impact on foetal gene expression through methylation changes. Food Chem Toxicol 109:714–720

    CAS  PubMed  Google Scholar 

  48. Sola S, Barrio T, Martin A (1997) Essential elements (Mn, Fe, Cu, Zn) in pork and duck liver paste produced in Spain. Food Addit Contam 14:135–141

    CAS  PubMed  Google Scholar 

  49. Di Giulio RT, Scanlon PF (1984) Heavy metals in tissues of waterfowl from the Chesapeake bay, USA. Environ Pollut (Series A) 35:29–48

    Google Scholar 

  50. Taggart MA, Figuerola J, Green AJ, Mateo R, Deacon C, Osborn D, Meharg AA (2006) After the Aznalcóllar mine spill: arsenic, zinc, selenium, lead and copper levels in the livers and bones of five waterfowl species. Environ Res Mar 100:349–361

    CAS  Google Scholar 

  51. Binkowski ŁJ, Sawicka-Kapusta K (2015) Cadmium concentrations and their implications in mallard and coot from fish pond areas. Chemosphere 119:620–625

    CAS  PubMed  Google Scholar 

  52. Aloupi M, Karagianni A, Kazantzidis S, Akriotis T (2017) Heavy metals in liver and brain of waterfowl from the Evros Delta, Greece. Arch Environ Contam Toxicol 72:215–234

    CAS  PubMed  Google Scholar 

  53. Abduljaleel SA, Shuhaimi-Othman M (2013) Toxicity of cadmium and lead in Gallus gallus domesticus assessment of body weight and metal content in tissues after metal dietary supplements. Pak J Biol Sci 16:1551–1556

    CAS  PubMed  Google Scholar 

  54. Mateo R, Guitart R (2003) Heavy metals in livers of waterfowls from Spain. Arch Environ Contam Toxicol 44:398–404

    CAS  PubMed  Google Scholar 

  55. Kim J, Oh JM (2014) Assessment of lead exposure in waterfowl species, Korea. Arch Environ Contam Toxicol 67:529–534

    CAS  PubMed  Google Scholar 

  56. JECFA (2011) Safety evaluation of certain food additives and contaminants. Paper presented at: 73rd Meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additives Series 64

  57. Bellinger DC (2004) Lead. Pediatrics 113:1016–1022

    PubMed  Google Scholar 

  58. Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M, Egelhoff JC, Wessel S, Elangovan I, Hornung R, Jarvis K, Lanphear BP (2008) Decreased brain volume in adults with childhood lead exposure. PLoS Med 5:e112

    PubMed  PubMed Central  Google Scholar 

  59. Wright JP, Dietrich KN, Ris MD, Hornung RW, Wessel SD, Lanphear BP, Ho M, Rae MN (2008) Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med 5:e101

    PubMed  PubMed Central  Google Scholar 

  60. Bellinger DC (2011) The protein toxicities of lead: new chapters in a familiar story. Int J Environ Res Public Health 8:2593–2628

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Beyer WN, Dalgarn J, Dudding S, French JB, Mateo R, Miesner J, Sileo L, Spann J (2004) Zinc and lead poisoning in wild birds in the Tri-State Mining District (Oklahoma, Kansas, and Missouri). Arch Environ Contam Toxicol 48:108–117

    Google Scholar 

  62. Puls R (1994) Mineral levels in animal health: diagnostic data, 2nd edn. Sherpa International, Clearbrook

  63. Isanhart JP, Wu H, Pandher K, MacRae RK, Cox SB, Hooper MJ (2011) Behavioral, clinical, and pathological characterization of acid metalliferous water toxicity in mallards. Arch Environ Contam Toxicol 61:653–667

    CAS  PubMed  Google Scholar 

  64. Araya M, McGoldrick MC, Klevay LM, Strain JJ, Robson P, Nielsen F, Olivares M, Pizarro F, Johnson L, Poirier KA (2001) Determination of an acute no-observed-adverse-effect level (NOAEL) for copper in water. Regul Toxicol Pharmacol 34:137–148

    CAS  PubMed  Google Scholar 

  65. Gotteland M, Araya M, Pizarro F, Olivares M (2001) Effect of acute copper exposure on gastrointestinal permeability in healthy volunteers. Dig Dis Sci 46:1909–1914

    CAS  PubMed  Google Scholar 

  66. ATSDR (2004) Toxicological profile for copper, Department of Public Health and Human services, Public health service. Atlanta, GA: USBellinger D.C. 2004. Lead. Pediatrics 113(4 Suppl):1016–1022

    Google Scholar 

  67. Abou-Arab AAK (2001) Heavy metal contents in Egyptian meat and the role of detergent washing on their levels. Food Chem Toxicol 39:593–599

    CAS  PubMed  Google Scholar 

  68. Lucia M, Andre MJ, Gonzalez P, Baudrimont M, Gontier K, Brachet MR, Davail S (2009) Impact of cadmium on aquatic bird Carina moschata. Biometals 22:843–853

    CAS  PubMed  Google Scholar 

  69. Kägi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    PubMed  Google Scholar 

  70. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zikita O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bulat ZP, Djukić-Cosić D, Malicević Z, Bulat P, Matović V (2008) Zinc or magnesium supplementation modulates Cd intoxication in blood, kidney, spleen and bone of rabbits. Biol Trace Elem Res 124:110–117

    CAS  PubMed  Google Scholar 

  72. Wayland M, Scheuhammer AM (2011) Cadmium in birds. In: Beyer MN, Meador JP (eds) Environmental contaminants in biota, 2nd edn. CRC Press, New York, pp 645–667

    Google Scholar 

  73. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicol 189:147–163

    CAS  Google Scholar 

  74. Cao H, Su R, Hu G, Li C, Guo J, Pan J, Tang Z (2016) In vivo effects of high dietary copper levels on hepatocellular mitochondrial respiration and electron transport chain enzymes in broilers. Br Poult Sci 57:63–70

    CAS  PubMed  Google Scholar 

  75. Takekawa JY, Wainwright-De La Cruz SE, Hothem RL, Yee J (2002) Relating body condition to inorganic contaminant concentrations of diving ducks wintering in coastal California. Arch Environ Contam Toxicol 42:60–70

    CAS  PubMed  Google Scholar 

  76. Nam DH, Anan Y, Ikemoto T, Tanabe S (2005) Multielemental accumulation and its intracellular distribution in tissues of some aquatic birds. Mar Pollut Bull 50:1347–1362

    CAS  PubMed  Google Scholar 

  77. Bortey-Sam N, Nakayama MMS, Ikenaka Y, Akoto O, Baidoo E, Yohannes BY, Mizukawa H, Ishizuka M (2015) Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicol Environ Saf 111:160–167

    CAS  PubMed  Google Scholar 

  78. Kim EY, Ichihashi H, Seaki K, Atrashkevich G, Tanabe S, Tatsukawa R (1996) Metal accumulation in tissues of seabirds from Chaun, northeast Siberia Russia. Environ Pollut 92:247–252

    CAS  PubMed  Google Scholar 

  79. Kim J, Oh JM (2012) Metal levels of waterfowl from Korea. Ecotoxicol Environ Saf 78:162–169

    CAS  PubMed  Google Scholar 

  80. Levengood JM, Skowron LM (2007) Coaccumulation of cadmium and zinc in tissues of sentinel mallards (Anas platyrhynchos) using a former dredge-disposal impoundment. Arch Environ Contam Toxicol 53:281–286

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand, “The Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand” (CASAF, NRU-KU, Thailand), the Thailand Research Fund (TRF), RDG no. 5720053, and the Faculty of Veterinary Medicine, Kasetsart University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phitsanu Tulayakul.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The protocol of laboratory animal uses has been approved by ethical committees of Kasetsart University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aendo, P., Netvichian, R., Khaodhiar, S. et al. Pb, Cd, and Cu Play a Major Role in Health Risk from Contamination in Duck Meat and Offal for Food Production in Thailand. Biol Trace Elem Res 198, 243–252 (2020). https://doi.org/10.1007/s12011-020-02040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02040-y

Keywords

Navigation