Skip to main content

Advertisement

Log in

Role of Selenoproteins in Bacterial Pathogenesis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The trace element selenium is an essential micronutrient that plays an important role in maintaining homeostasis of several tissues including the immune system of mammals. The vast majority of the biological functions of selenium are mediated via selenoproteins, proteins which incorporate the selenium-containing amino acid selenocysteine. Several bacterial infections of humans and animals are associated with decreased levels of selenium in the blood and an adjunct therapy with selenium often leads to favorable outcomes. Many pathogenic bacteria are also capable of synthesizing selenocysteine suggesting that selenoproteins may have a role in bacterial physiology. Interestingly, the composition of host microbiota is also regulated by dietary selenium levels. Therefore, bacterial pathogens, microbiome, and host immune cells may be competing for a limited supply of selenium. Elucidating how selenium, in particular selenoproteins, may regulate pathogen virulence, microbiome diversity, and host immune response during a bacterial infection is critical for clinical management of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Romero H, Zhang Y, Gladyshev VN, Salinas G (2005) Evolution of selenium utilization traits. Genome Biol 6:R66. https://doi.org/10.1186/gb-2005-6-8-r66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang Y, Turanov AA, Hatfield DL, Gladyshev VN (2008) In silico identification of genes involved in selenium metabolism: evidence for a third selenium utilization trait. BMC Genomics 9:251. https://doi.org/10.1186/1471-2164-9-251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Romero H, Salinas G, Gladyshev VN (2006) Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol 7:R94. https://doi.org/10.1186/gb-2006-7-10-r94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39:112–120. https://doi.org/10.1016/j.tibs.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100. https://doi.org/10.1146/annurev.bi.65.070196.000503

    Article  CAS  PubMed  Google Scholar 

  6. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130. https://doi.org/10.1146/annurev.micro.60.080805.142053

    Article  CAS  PubMed  Google Scholar 

  7. Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576. https://doi.org/10.1128/mcb.22.11.3565-3576.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gladyshev VN (2016) Eukaryotic selenoproteomes. In: Selenium. Springer International Publishing, Cham, pp 127–139

    Chapter  Google Scholar 

  9. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241. https://doi.org/10.1016/S0140-6736(00)02490-9

    Article  CAS  PubMed  Google Scholar 

  10. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743. https://doi.org/10.1089/ars.2011.4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777. https://doi.org/10.1152/physrev.00039.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chariot P, Bignani O (2003) Skeletal muscle disorders associated with selenium deficiency in humans. Muscle Nerve 27:662–668. https://doi.org/10.1002/mus.10304

    Article  CAS  PubMed  Google Scholar 

  13. Ishihara H, Kanda F, Matsushita T et al (1999) White muscle disease in humans: myopathy caused by selenium deficiency in anorexia nervosa under long term total parenteral nutrition. J Neurol Neurosurg Psychiatry 67:829–830. https://doi.org/10.1136/jnnp.67.6.829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheehan HB, Benetucci J, Muzzio E et al (2012) High rates of serum selenium deficiency among HIV- and HCV-infected and uninfected drug users in Buenos Aires, Argentina. Public Health Nutr 15:538–545. https://doi.org/10.1017/S1368980011001364

    Article  PubMed  Google Scholar 

  15. Di Bella S, Grilli E, Cataldo MA, Petrosillo N (2010) Selenium deficiency and HIV infection. Infect Dis Rep 2:18. https://doi.org/10.4081/idr.2010.e18

    Article  Google Scholar 

  16. Choi R, Kim H-T, Lim Y et al (2015) Serum concentrations of trace elements in patients with tuberculosis and its association with treatment outcome. Nutrients 7:5969–5981. https://doi.org/10.3390/nu7075263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rudolph M, Kroll F, Beery M et al (2013) A pilot study assessing the impact of a fortified supplementary food on the health and well-being of crèche children and adult TB patients in South Africa. PLoS One 8:e55544. https://doi.org/10.1371/journal.pone.0055544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baum MK, Campa A, Lai S et al (2013) Effect of micronutrient supplementation on disease progression in asymptomatic, antiretroviral-naive, HIV-infected adults in Botswana: a randomized clinical trial. JAMA 310:2154–2163. https://doi.org/10.1001/jama.2013.280923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Groenbaek K, Friis H, Hansen M et al (2006) The effect of antioxidant supplementation on hepatitis C viral load, transaminases and oxidative status: a randomized trial among chronic hepatitis C virus-infected patients. Eur J Gastroenterol Hepatol 18:985–989. https://doi.org/10.1097/01.meg.0000231746.76136.4a

    Article  CAS  PubMed  Google Scholar 

  20. Khan MS, Dilawar S, Ali I, Rauf N (2012) The possible role of selenium concentration in hepatitis B and C patients. Saudi J Gastroenterol 18:106–110. https://doi.org/10.4103/1319-3767.93811

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steinbrenner H, Al-Quraishy S, Dkhil MA et al (2015) Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr 6:73–82. https://doi.org/10.3945/an.114.007575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Villamor E, Mugusi F, Urassa W et al (2008) A trial of the effect of micronutrient supplementation on treatment outcome, T cell counts, morbidity, and mortality in adults with pulmonary tuberculosis. J Infect Dis 197:1499–1505. https://doi.org/10.1086/587846

    Article  PubMed  Google Scholar 

  23. Seyedrezazadeh E, Ostadrahimi A, Mahboob S et al (2008) Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients. Respirology 13:294–298. https://doi.org/10.1111/j.1440-1843.2007.01200.x

    Article  PubMed  Google Scholar 

  24. Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538–543. https://doi.org/10.1038/sj.embor.7400126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Santesmasses D, Mariotti M, Guigó R (2017) Computational identification of the selenocysteine tRNA (tRNASec) in genomes. PLoS Comput Biol 13:e1005383. https://doi.org/10.1371/journal.pcbi.1005383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Axley MJ, Stadtman TC (1989) Selenium metabolism and selenium-dependent enzymes in microorganisms. Annu Rev Nutr 9:127–137. https://doi.org/10.1146/annurev.nu.09.070189.001015

    Article  CAS  PubMed  Google Scholar 

  27. Böck A, Forchhammer K, Heider J et al (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520. https://doi.org/10.1111/j.1365-2958.1991.tb00722.x

    Article  PubMed  Google Scholar 

  28. Böck A (2001) Selenium metabolism in bacteria. In: Selenium. Springer US, Boston, pp 7–22

    Chapter  Google Scholar 

  29. Böck A (2000) Biosynthesis of selenoproteins—an overview. Biofactors 11:77–78

    Article  PubMed  Google Scholar 

  30. Thanbichler M, Böck A (2002) Selenoprotein biosynthesis: purification and assay of components involved in selenocysteine biosynthesis and insertion in Escherichia coli. In: Methods in enzymology. pp 3–16

    Google Scholar 

  31. Lin J, Peng T, Jiang L et al (2015) Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol Evol 7:664–676. https://doi.org/10.1093/gbe/evv022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bulteau A-L, Chavatte L (2015) Update on selenoprotein biosynthesis. Antioxid Redox Signal 23:775–794. https://doi.org/10.1089/ars.2015.6391

    Article  CAS  PubMed  Google Scholar 

  33. Caton-Williams J, Huang Z (2008) Biochemistry of selenium-derivatized naturally occurring and unnatural nucleic acids. Chem Biodivers 5:396–407. https://doi.org/10.1002/cbdv.200890040

    Article  CAS  PubMed  Google Scholar 

  34. Ching WM, Alzner-DeWeerd B, Stadtman TC (1985) A selenium-containing nucleoside at the first position of the anticodon in seleno-tRNAGlu from Clostridium sticklandii. Proc Natl Acad Sci 82:347–350. https://doi.org/10.1073/pnas.82.2.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ching W-M (1986) Characterization of selenium-containing tRNAGlu from Clostridium sticklandii. Arch Biochem Biophys 244:137–146. https://doi.org/10.1016/0003-9861(86)90102-5

    Article  CAS  PubMed  Google Scholar 

  36. Gladyshev VN, Khangulov SV, Stadtman TC (1996) Properties of the selenium- and molybdenum-containing nicotinic acid hydroxylase from Clostridium barkeri. Biochemistry 35:212–223. https://doi.org/10.1021/bi951793i

    Article  CAS  PubMed  Google Scholar 

  37. Self WT (2002) Regulation of purine hydroxylase and xanthine dehydrogenase from Clostridium purinolyticum in response to purines, selenium, and molybdenum. J Bacteriol 184:2039–2044. https://doi.org/10.1128/JB.184.7.2039-2044.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peng T, Lin J, Xu Y-Z, Zhang Y (2016) Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J 10:2048–2059. https://doi.org/10.1038/ismej.2015.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferry JG (1990) Formate dehydrogenase. FEMS Microbiol Lett 87:377–382. https://doi.org/10.1111/j.1574-6968.1990.tb04940.x

    Article  CAS  Google Scholar 

  40. Bettenbrock K, Bai H, Ederer M, et al (2014) Towards a systems level understanding of the oxygen response of Escherichia coli. In: Advances in microbial physiology. pp 65–114

    Google Scholar 

  41. Axley MJ, Bock A, Stadtman TC (1991) Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci 88:8450–8454. https://doi.org/10.1073/pnas.88.19.8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaw FL, Mulholland F, Le Gall G et al (2012) Selenium-dependent biogenesis of formate dehydrogenase in Campylobacter jejuni is controlled by the fdhTU accessory genes. J Bacteriol 194:3814–3823. https://doi.org/10.1128/JB.06586-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tareen AM, Dasti JI, Zautner AE et al (2010) Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. Microbiology 156:3123–3135. https://doi.org/10.1099/mic.0.039438-0

    Article  CAS  PubMed  Google Scholar 

  44. Andreesen JR, Wagner M, Sonntag D et al (1999) Various functions of selenols and thiols in anaerobic Gram-positive, amino acids-utilizing bacteria. BioFactors 10:263–270. https://doi.org/10.1002/biof.5520100226

    Article  CAS  PubMed  Google Scholar 

  45. Garcia GE, Stadtman TC (1992) Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli. J Bacteriol 174:7080–7089. https://doi.org/10.1128/jb.174.22.7080-7089.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schrader T, Rienhofer A, Andreesen JR (1999) Selenium-containing xanthine dehydrogenase from Eubacterium barkeri. Eur J Biochem 264:862–871. https://doi.org/10.1046/j.1432-1327.1999.00678.x

    Article  CAS  PubMed  Google Scholar 

  47. Self WT, Stadtman TC (2000) Selenium-dependent metabolism of purines: a selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized. Proc Natl Acad Sci 97:7208–7213. https://doi.org/10.1073/pnas.97.13.7208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Srivastava M, Mallard C, Barke T et al (2011) A selenium-dependent xanthine dehydrogenase triggers biofilm proliferation in Enterococcus faecalis through oxidant production. J Bacteriol 193:1643–1652. https://doi.org/10.1128/JB.01063-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rucker RB, Fascetti AJ, Keen CL (2008) Trace minerals. In: Clinical biochemistry of domestic animals. Elsevier, Amsterdam, pp 663–693

    Chapter  Google Scholar 

  50. van Crevel R, Ottenhoff THM, van der Meer JWM (2002) Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev 15:294–309. https://doi.org/10.1128/CMR.15.2.294-309.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54. https://doi.org/10.1039/C3MT00185G

    Article  CAS  PubMed  Google Scholar 

  52. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457S–1459S. https://doi.org/10.1093/jn/133.5.1457S

    Article  CAS  PubMed  Google Scholar 

  53. Gao X, Zhang Z, Li Y et al (2016) Selenium deficiency facilitates inflammation following S. aureus infection by regulating TLR2-related pathways in the mouse mammary gland. Biol Trace Elem Res 172:449–457. https://doi.org/10.1007/s12011-015-0614-y

    Article  CAS  PubMed  Google Scholar 

  54. Smith AD, Cheung L, Botero S (2011) Long-term selenium deficiency increases the pathogenicity of a Citrobacter rodentium infection in mice. Biol Trace Elem Res 144:965–982. https://doi.org/10.1007/s12011-011-9071-4

    Article  CAS  PubMed  Google Scholar 

  55. Smith AD, Botero S, Shea-Donohue T, Urban JF (2011) The pathogenicity of an enteric Citrobacter rodentium infection is enhanced by deficiencies in the antioxidants selenium and vitamin E. Infect Immun 79:1471–1478. https://doi.org/10.1128/IAI.01017-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang C, Wang H, Luo J et al (2009) Selenium deficiency impairs host innate immune response and induces susceptibility to Listeria monocytogenes infection. BMC Immunol 10:55. https://doi.org/10.1186/1471-2172-10-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berg BM, Godbout JP, Chen J et al (2005) alpha-Tocopherol and selenium facilitate recovery from lipopolysaccharide-induced sickness in aged mice. J Nutr 135:1157–1163. https://doi.org/10.1093/jn/135.5.1157

    Article  CAS  PubMed  Google Scholar 

  58. Altimira J, Prats N, López S et al (2000) Effect of selenium deficiency on the development of central nervous system lesions in murine listeriosis. J Comp Pathol 123:104–109. https://doi.org/10.1053/jcpa.2000.0399

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, Qiu C, Li W et al (2016) Selenium plays a protective role in Staphylococcus aureus-induced endometritis in the uterine tissue of rats. Biol Trace Elem Res 173:345–353. https://doi.org/10.1007/s12011e-016-0659-6

    Article  CAS  PubMed  Google Scholar 

  60. Kim SH, Ha U-S, Sohn DW et al (2012) Preventive effect of ginsenoid on chronic bacterial prostatitis. J Infect Chemother 18:709–714. https://doi.org/10.1007/s10156-012-0406-7

    Article  CAS  PubMed  Google Scholar 

  61. Boyne R, Arthur JR, Wilson AB (1986) An in vivo and in vitro study of selenium deficiency and infection in rats. J Comp Pathol 96:379–386

    Article  CAS  PubMed  Google Scholar 

  62. Sjunnesson H, Sturegård E, Willén R, Wadström T (2001) High intake of selenium, beta-carotene, and vitamins A, C, and E reduces growth of Helicobacter pylori in the guinea pig. Comp Med 51:418–423

    CAS  PubMed  Google Scholar 

  63. Centers for Disease Control and Prevention (2012) Reported Tuberculosis in the United States, 2017. Atlanta, GA: U.S. Department of Health and Human Services, CDC.Available at http://www.cdc.gov/tb/statistics/reports/2017/. Accessed Oct 2018

  64. Lazzari TK, Forte GC, Silva DR (2018) Nutrition status among HIV-positive and HIV-negative inpatients with pulmonary tuberculosis. Nutr Clin Pract 33:858–864. https://doi.org/10.1002/ncp.10006

    Article  CAS  PubMed  Google Scholar 

  65. Muzembo BA, Mbendi NC, Ngatu NR et al (2018) Serum selenium levels in tuberculosis patients: a systematic review and meta-analysis. J Trace Elem Med Biol 50:257–262. https://doi.org/10.1016/j.jtemb.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  66. Kassu A, Yabutani T, Mahmud ZH et al (2006) Alterations in serum levels of trace elements in tuberculosis and HIV infections. Eur J Clin Nutr 60:580–586. https://doi.org/10.1038/sj.ejcn.1602352

    Article  CAS  PubMed  Google Scholar 

  67. de Moraes ML, de Paula RDM, Delogo KN et al (2014) Association between serum selenium level and conversion of bacteriological tests during antituberculosis treatment. J Bras Pneumol 40:269–278. https://doi.org/10.1590/S1806-37132014000300010

    Article  PubMed  PubMed Central  Google Scholar 

  68. Campa A, Baum M, Bussmann H et al (2017) The effect of micronutrient supplementation on active TB incidence early in HIV infection in Botswana. Nutr Diet Suppl 9:37–45. https://doi.org/10.2147/NDS.S123545

    Article  CAS  Google Scholar 

  69. Kawai K, Meydani SN, Urassa W et al (2014) Micronutrient supplementation and T cell-mediated immune responses in patients with tuberculosis in Tanzania. Epidemiol Infect 142:1505–1509. https://doi.org/10.1017/S0950268813002495

    Article  CAS  PubMed  Google Scholar 

  70. Grobler L, Nagpal S, Sudarsanam TD, Sinclair D (2016) Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006086.pub4

  71. Angstwurm MWA, Schottdorf J, Schopohl J, Gaertner R (1999) Selenium replacement in patients with severe systemic inflammatory response syndrome improves clinical outcome. Crit Care Med 27:1807–1813. https://doi.org/10.1097/00003246-199909000-00017

    Article  CAS  PubMed  Google Scholar 

  72. Berger MM, Eggimann P, Heyland DK et al (2006) Reduction of nosocomial pneumonia after major burns by trace element supplementation: aggregation of two randomised trials. Crit Care 10:R153. https://doi.org/10.1186/cc5084

    Article  PubMed  PubMed Central  Google Scholar 

  73. Angstwurm MWA, Engelmann L, Zimmermann T et al (2007) Selenium in intensive care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock*. Crit Care Med 35:118–126. https://doi.org/10.1097/01.CCM.0000251124.83436.0E

    Article  CAS  PubMed  Google Scholar 

  74. Forceville X, Laviolle B, Annane D et al (2007) Effects of high doses of selenium, as sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit Care 11:R73. https://doi.org/10.1186/cc5960

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mishra V, Baines M, Elizabeth Perry S et al (2007) Effect of selenium supplementation on biochemical markers and outcome in critically ill patients. Clin Nutr 26:41–50. https://doi.org/10.1016/j.clnu.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  76. Andrews PJD, Avenell A, Noble DW et al (2011) Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ 342:d1542–d1542. https://doi.org/10.1136/bmj.d1542

    Article  CAS  PubMed  Google Scholar 

  77. Manzanares W, Biestro A, Torre MH et al (2011) High-dose selenium reduces ventilator-associated pneumonia and illness severity in critically ill patients with systemic inflammation. Intensive Care Med 37:1120–1127. https://doi.org/10.1007/s00134-011-2212-6

    Article  CAS  PubMed  Google Scholar 

  78. Valenta J, Brodska H, Drabek T et al (2011) High-dose selenium substitution in sepsis: a prospective randomized clinical trial. Intensive Care Med 37:808–815. https://doi.org/10.1007/s00134-011-2153-0

    Article  CAS  PubMed  Google Scholar 

  79. Janka V, Ladislav K, Jozef F, Ladislav V (2013) Restoration of antioxidant enzymes in the therapeutic use of selenium in septic patients. Wien Klin Wochenschr 125:316–325. https://doi.org/10.1007/s00508-013-0371-x

    Article  CAS  PubMed  Google Scholar 

  80. Kamboj AK, Cotter TG, Oxentenko AS (2017) Helicobacter pylori: the past, present, and future in management. Mayo Clin Proc 92:599–604. https://doi.org/10.1016/j.mayocp.2016.11.017

    Article  PubMed  Google Scholar 

  81. CDC (1998) Helicobacter pylori outer membrane protein (Omp22); used in a recombinant vaccine for therapy or prevention of H. pylori infection Mogam Biotechnol. Res. Inst. Kyonggi World 9728 264; 7 August 1997. Vaccine 16:436. https://doi.org/10.1016/S0264-410X(97)80923-1

    Article  Google Scholar 

  82. Lahner E, Persechino S, Annibale B (2012) Micronutrients (other than iron) and Helicobacter pylori infection: a systematic review. Helicobacter 17:1–15. https://doi.org/10.1111/j.1523-5378.2011.00892.x

    Article  CAS  PubMed  Google Scholar 

  83. Ustündağ Y, Boyacioğlu S, Haberal A et al (2001) Plasma and gastric tissue selenium levels in patients with Helicobacter pylori infection. J Clin Gastroenterol 32:405–408. https://doi.org/10.1097/00004836-200105000-00009

    Article  PubMed  Google Scholar 

  84. Hu A, Li L, Hu C et al (2018) Serum concentrations of 15 elements among Helicobacter pylori-infected residents from Lujiang County with high gastric cancer risk in Eastern China. Biol Trace Elem Res 186:21–30. https://doi.org/10.1007/s12011-018-1283-4

    Article  CAS  PubMed  Google Scholar 

  85. Camargo MC, Burk RF, Bravo LE et al (2008) Plasma selenium measurements in subjects from areas with contrasting gastric cancer risks in Colombia. Arch Med Res 39:443–451. https://doi.org/10.1016/j.arcmed.2007.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B (2017) The Keap1–Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev 9:41–56. https://doi.org/10.1007/s12551-016-0244-4

    Article  CAS  PubMed  Google Scholar 

  87. Ji JH, Shin DG, Kwon Y et al (2012) Clinical correlation between gastric cancer type and serum selenium and zinc levels. J Gastric Cancer 12:217. https://doi.org/10.5230/jgc.2012.12.4.217

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kneller RW, De Guo W, Hsing AW et al (1992) Risk factors for stomach cancer in sixty-five Chinese counties. Cancer Epidemiol Biomark Prev 1:113–118

    CAS  Google Scholar 

  89. Cai X, Wang C, Yu W et al (2016) Selenium exposure and cancer risk: an updated meta-analysis and meta-regression. Sci Rep 6:19213. https://doi.org/10.1038/srep19213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gong H-Y, He J-G, Li B-S (2016) Meta-analysis of the association between selenium and gastric cancer risk. Oncotarget 7:15600–15605. https://doi.org/10.18632/oncotarget.7205

    Article  PubMed  PubMed Central  Google Scholar 

  91. Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Armstrong BA, Betzold RD, May AK (2017) Sepsis and septic shock strategies. Surg Clin North Am 97:1339–1379. https://doi.org/10.1016/j.suc.2017.07.003

    Article  PubMed  Google Scholar 

  93. Sakr Y, Reinhart K, Bloos F et al (2007) Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br J Anaesth 98:775–784. https://doi.org/10.1093/bja/aem091

    Article  CAS  PubMed  Google Scholar 

  94. Mertens K, Lowes DA, Webster NR et al (2015) Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth 114:990–999. https://doi.org/10.1093/bja/aev073

    Article  CAS  PubMed  Google Scholar 

  95. Zolali E, Hamishehkar H, Maleki-Dizaji N et al (2014) Selenium effect on oxidative stress factors in septic rats. Adv Pharm Bull 4:289–293. https://doi.org/10.5681/apb.2014.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reber LL, Gillis CM, Starkl P et al (2017) Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. J Exp Med 214:1249–1258. https://doi.org/10.1084/jem.20161238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Balasubramanian D, Harper L, Shopsin B, Torres VJ (2017) Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 75. https://doi.org/10.1093/femspd/ftx005

  98. Bi C-L, Wang H, Wang Y-J et al (2016) Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signalling pathways in RAW264.7 macrophages. Eur J Pharmacol 780:159–165. https://doi.org/10.1016/j.ejphar.2016.03.044

    Article  CAS  PubMed  Google Scholar 

  99. Cole J, Aberdein J, Jubrail J, Dockrell DH (2014) The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus. In: Advances in microbial physiology, pp 125–202

    Google Scholar 

  100. Aribi M, Meziane W, Habi S et al (2015) Macrophage bactericidal activities against Staphylococcus aureus are enhanced in vivo by selenium supplementation in a dose-dependent manner. PLoS One 10:e0135515. https://doi.org/10.1371/journal.pone.0135515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gao X, Zhang Z, Li Y et al (2016) Selenium deficiency deteriorate the inflammation of S. aureus infection via regulating NF-κB and PPAR-γ in mammary gland of mice. Biol Trace Elem Res 172:140–147. https://doi.org/10.1007/s12011-015-0563-5

    Article  CAS  PubMed  Google Scholar 

  102. Wei Z, Yao M, Li Y et al (2014) Dietary Selenium deficiency exacerbates lipopolysaccharide-induced inflammatory response in mouse mastitis models. Inflammation 37:1925–1931. https://doi.org/10.1007/s10753-014-9925-y

    Article  CAS  PubMed  Google Scholar 

  103. Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. https://doi.org/10.1038/nrmicro818

    Article  CAS  PubMed  Google Scholar 

  104. Yang J, Huang K, Qin S et al (2009) Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Dig Dis Sci 54:246–254. https://doi.org/10.1007/s10620-008-0361-4

    Article  CAS  PubMed  Google Scholar 

  105. Kim HW, Ha U-S, Woo JC et al (2012) Preventive effect of selenium on chronic bacterial prostatitis. J Infect Chemother 18:30–34. https://doi.org/10.1007/s10156-011-0276-4

    Article  CAS  PubMed  Google Scholar 

  106. Li J, Uzal F, McClane B (2016) Clostridium perfringens sialidases: potential contributors to intestinal pathogenesis and therapeutic targets. Toxins (Basel) 8:341. https://doi.org/10.3390/toxins8110341

    Article  CAS  Google Scholar 

  107. Kiu R, Hall LJ (2018) An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 7:1–15. https://doi.org/10.1038/s41426-018-0144-8

    Article  CAS  Google Scholar 

  108. Xu S, Lee S-H, Lillehoj HS et al (2015) Effects of dietary selenium on host response to necrotic enteritis in young broilers. Res Vet Sci 98:66–73. https://doi.org/10.1016/j.rvsc.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  109. Lee SH, Lillehoj HS, Jang SI et al (2014) Effects of in ovo injection with selenium on immune and antioxidant responses during experimental necrotic enteritis in broiler chickens1. Poult Sci 93:1113–1121. https://doi.org/10.3382/ps.2013-03770

    Article  CAS  PubMed  Google Scholar 

  110. CDC (2014) General information|cholera|CDC. CDC, Atlanta

    Google Scholar 

  111. Bhattaram V, Upadhyay A, Yin H-B et al (2017) Effect of dietary minerals on virulence attributes of Vibrio cholerae. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00911

  112. Hall JA, Vorachek WR, Stewart WC et al (2013) Selenium supplementation restores innate and humoral immune responses in footrot-affected sheep. PLoS One 8:e82572. https://doi.org/10.1371/journal.pone.0082572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Partogi D, Dalimunthe DA, Hazlianda CP (2018) A study of selenium in leprosy. Open Access Maced J Med Sci 6:485–487. https://doi.org/10.3889/oamjms.2018.136

    Article  PubMed  PubMed Central  Google Scholar 

  114. Foster R, Sanchez A, Foulkes J, Cameron LJ (1991) Profile of blood elements in leprosy patients. Indian J Lepr 63:12–33

    CAS  PubMed  Google Scholar 

  115. Kong Z, Wang F, Ji S et al (2013) Selenium supplementation for sepsis: a meta-analysis of randomized controlled trials. Am J Emerg Med 31:1170–1175. https://doi.org/10.1016/j.ajem.2013.04.020

    Article  PubMed  Google Scholar 

  116. Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38:159–165. https://doi.org/10.2337/dc14-0769

    Article  CAS  PubMed  Google Scholar 

  117. Wolf KJ, Lorenz RG (2012) Gut microbiota and obesity. Curr Obes Rep 1:1–8. https://doi.org/10.1007/s13679-011-0001-8

    Article  PubMed  PubMed Central  Google Scholar 

  118. Manichanh C (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211. https://doi.org/10.1136/gut.2005.073817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McIlroy J, Ianiro G, Mukhopadhya I et al (2018) Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther 47:26–42. https://doi.org/10.1111/apt.14384

    Article  CAS  PubMed  Google Scholar 

  120. Borren NZ, Conway G, Garber JJ et al (2018) Differences in clinical course, genetics, and the microbiome between familial and sporadic inflammatory bowel diseases. J Crohn's Colitis 12:525–531. https://doi.org/10.1093/ecco-jcc/jjx154

    Article  Google Scholar 

  121. Assa A, Butcher J, Li J et al (2016) Mucosa-associated ileal microbiota in new-onset pediatric Crohn’s disease. Inflamm Bowel Dis 22:1533–1539. https://doi.org/10.1097/MIB.0000000000000776

    Article  PubMed  Google Scholar 

  122. Zackular JP, Baxter NT, Iverson KD et al (2013) The gut microbiome modulates colon tumorigenesis. MBio 4. https://doi.org/10.1128/mBio.00692-13

  123. Daniel SG, Ball CL, Besselsen DG et al (2017) Functional changes in the gut microbiome contribute to transforming growth factor β-deficient colon cancer. MSystems:2. https://doi.org/10.1128/mSystems.00065-17

  124. Scieszka M, Danch A, Machalski M, Drózdz M (1997) Plasma selenium concentration in patients with stomach and colon cancer in the Upper Silesia. Neoplasma 44:395–397. https://doi.org/10.1515/angl.2010.034

    Article  CAS  PubMed  Google Scholar 

  125. Kasaikina MV, Kravtsova MA, Lee BC et al (2011) Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J 25:2492–2499. https://doi.org/10.1096/fj.11-181990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gangadoo S, Dinev I, Chapman J et al (2018) Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Appl Microbiol Biotechnol 102:1455–1466. https://doi.org/10.1007/s00253-017-8688-4

    Article  CAS  PubMed  Google Scholar 

  127. Zhai Q, Cen S, Li P et al (2018) Effects of dietary selenium supplementation on intestinal barrier and immune responses associated with its modulation of gut microbiota. Environ Sci Technol Lett 5:724–730

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by AI123521 to GSK, T32 AI074551 to RLM,  and T32 GM108563 to SES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish S. Kirimanjeswara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumner, S.E., Markley, R.L. & Kirimanjeswara, G.S. Role of Selenoproteins in Bacterial Pathogenesis. Biol Trace Elem Res 192, 69–82 (2019). https://doi.org/10.1007/s12011-019-01877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01877-2

Keywords

Navigation