Skip to main content

Advertisement

Log in

Systems Biology of Selenium and Complex Disease

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium is an essential trace element for maintenance of overall health, whose deficiency and dyshomeostasis have been linked to a variety of diseases and disorders. The majority of previous researches focused on characterization of genes encoding selenoproteins or proteins involved in selenium metabolism as well as their functions. Many studies in humans also investigated the relationship between selenium and complex diseases, but their results have been inconsistent. In recent years, systems biology and “-omics” approaches have been widely used to study complex and global variations of selenium metabolism and function in physiological and different pathological conditions. The present paper reviews recent progress in large-scale and systematic analyses of the relationship between selenium status or selenoproteins and several complex diseases, mainly including population-based cohort studies and meta-analyses, genetic association studies, and some other omics-based studies. Advances in ionomics and its application in studying the interaction between selenium and other trace elements in human health and diseases are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Duntas LH, Benvenga S (2015) Selenium: an element for life. Endocrine 48:756–775

    CAS  PubMed  Google Scholar 

  2. Bartolini D, Sancineto L, Fabro de Bem A, Tew KD, Santi C, Radi R, Toquato P, Galli F (2017) Selenocompounds in cancer therapy: an overview. Adv Cancer Res 136:259–302

    CAS  PubMed  Google Scholar 

  3. Sanmartin C, Plano D, Font M, Palop JA (2011) Selenium and clinical trials: new therapeutic evidence for multiple diseases. Curr Med Chem 18:4635–4650

    CAS  PubMed  Google Scholar 

  4. Rees K, Hartley L, Day C, Flowers N, Clarke A, Stranges S (2013) Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev (1):CD009671

  5. Wrobel JK, Power R, Toborek M (2016) Biological activity of selenium: revisited. IUBMB Life 68:97–105

    CAS  PubMed  Google Scholar 

  6. Bulteau AL, Chavatte L (2015) Update on selenoprotein biosynthesis. Antioxid Redox Signal 23:775–794

    CAS  PubMed  Google Scholar 

  7. Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66:2457–2478

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    CAS  PubMed  Google Scholar 

  9. Steinbrenner H, Speckmann B, Klotz LO (2016) Selenoproteins: antioxidant selenoenzymes and beyond. Arch Biochem Biophys 595:113–119

    CAS  PubMed  Google Scholar 

  10. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    CAS  PubMed  Google Scholar 

  11. Rose AH, Hoffmann PR (2015) Selenoproteins and cardiovascular stress. Thromb Haemost 113:494–504

    PubMed  Google Scholar 

  12. Ge K, Yang G (1993) The epidemiology of selenium deficiency in the etiological study of endemic diseases in China. Am J Clin Nutr 57:259S–263S

    CAS  PubMed  Google Scholar 

  13. Vinceti M, Filippini T, Wise LA (2018) Environmental selenium and human health: an update. Curr Environ Health Rep 5:464–485

    PubMed  Google Scholar 

  14. Loscalzo J (2014) Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med 370:1756–1760

    CAS  PubMed  Google Scholar 

  15. Schomburg L (2016) Dietary selenium and human health. Nutrients 9:22

    PubMed Central  Google Scholar 

  16. Gibson G (2009) Decanalization and the origin of complex disease. Nat Rev Genet 10:134–140

    CAS  PubMed  Google Scholar 

  17. Narimatsu H (2017) Gene-environment interactions in preventive medicine: current status and expectations for the future. Int J Mol Sci 18:302

    PubMed Central  Google Scholar 

  18. Franks PW, Paré G (2016) Putting the genome in context: gene-environment interactions in type 2 diabetes. Curr Diab Rep 16:57

    PubMed  Google Scholar 

  19. Simonds NI, Ghazarian AA, Pimentel CB, Schully SD, Ellison GL, Gillanders EM, Mechanic LE (2016) Review of the gene-environment interaction literature in cancer: what do we know? Genet Epidemiol 40:356–365

    PubMed  PubMed Central  Google Scholar 

  20. Kohler LN, Foote J, Kelley CP, Florea A, Shelly C, Chow HS, Hsu P, Batai K, Ellis N, Saboda K, Lance P, Jacobs ET (2018) Selenium and type 2 diabetes: systematic review. Nutrients 10:1924

    PubMed Central  Google Scholar 

  21. Steinbrenner H, Speckmann B, Sies H (2013) Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid Redox Signal 19:181–191

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lipinski B (2017) Sodium selenite as an anticancer agent. Anti Cancer Agents Med Chem 17:658–661

    CAS  Google Scholar 

  23. Schlicht M, Matysiak B, Brodzeller T, Wen X, Liu H, Zhou G, Dhir R, Hessner MJ, Tonellato P, Suckow M, Pollard M, Datta MW (2004) Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium. BMC Genomics 5:58

    PubMed  PubMed Central  Google Scholar 

  24. Méplan C, Hughes DJ, Pardini B, Naccarati A, Soucek P, Vodickova L, Hlavatá I, Vrána D, Vodicka P, Hesketh JE (2010) Genetic variants in selenoprotein genes increase risk of colorectal cancer. Carcinogenesis 31:1074–1079

    PubMed  Google Scholar 

  25. Wu SX, Wang WZ, Zhang F, Wu CY, Dennis BS, Qu CJ, Bai YD, Guo X (2014) Expression profiles of genes involved in apoptosis and selenium metabolism in articular cartilage of patients with Kashin-Beck osteoarthritis. Gene 535:124–130

    CAS  PubMed  Google Scholar 

  26. Lammi MJ, Qu C (2018) Selenium-related transcriptional regulation of gene expression. Int J Mol Sci 19:2665

    PubMed Central  Google Scholar 

  27. Schweizer U, Fradejas-Villar N (2016) Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J 30:3669–3681

    CAS  PubMed  Google Scholar 

  28. Mao S, Zhang A, Huang S (2014) Selenium supplementation and the risk of type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Endocrine 47:758–763

    CAS  PubMed  Google Scholar 

  29. Xiao L, Yuan J, Yao Q, Yan N, Song R, Jiang W, Li D, Shi L, Zhang JA (2017) A case-control study of selenoprotein genes polymorphisms and autoimmune thyroid diseases in a Chinese population. BMC Med Genet 18:54

    PubMed  PubMed Central  Google Scholar 

  30. Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y (2017) Trace elements and healthcare: a bioinformatics perspective. Adv Exp Med Biol 1005:63–98

    PubMed  Google Scholar 

  32. Zhao HW, Lin J, Wang XB, Cheng X, Wang JY, Hu BL, Zhang Y, Zhang X, Zhu JH (2013) Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson’s disease. PLoS One 8:e83060

    PubMed  PubMed Central  Google Scholar 

  33. Roverso M, Berté C, Di Marco V, Lapolla A, Badocco D, Pastore P, Visentin S, Cosmi E (2015) The metallome of the human placenta in gestational diabetes mellitus. Metallomics 7:1146–1154

    CAS  PubMed  Google Scholar 

  34. Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Allmang C, Wurth L, Krol A (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790:1415–1423

    CAS  PubMed  Google Scholar 

  36. Schmidt RL, Simonović M (2012) Synthesis and decoding of selenocysteine and human health. Croat Med J 53:535–550

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    CAS  PubMed  Google Scholar 

  38. Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN (2007) Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 8:R198

    PubMed  PubMed Central  Google Scholar 

  39. Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One 7:e33066

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang L, Ni J, Liu Q (2012) Evolution of selenoproteins in the metazoan. BMC Genomics 13:446

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang L, Zhu HZ, Xu YZ, Ni JZ, Zhang Y, Liu Q (2013) Comparative selenoproteome analysis reveals a reduced utilization of selenium in parasitic platyhelminthes. PeerJ 1:e202

    PubMed  PubMed Central  Google Scholar 

  42. Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL, Wurch LL, Kustka AB, Dill BD, Shah M, VerBerkmoes NC, Kuo A, Terry A, Pangilinan J, Lindquist EA, Lucas S, Paulsen IT, Hattenrath-Lehmann TK, Talmage SC, Walker EA, Koch F, Burson AM, Marcoval MA, Tang YZ, Lecleir GR, Coyne KJ, Berg GM, Bertrand EM, Saito MA, Gladyshev VN, Grigoriev IV (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci U S A 108:4352–4357

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mariotti M, Salinas G, Gabaldón T, Gladyshev VN (2019) Utilization of selenocysteine in early-branching fungal phyla. Nat Microbiol 4:759–765

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dunn BK, Richmond ES, Minasian LM, Ryan AM, Ford LG (2010) A nutrient approach to prostate cancer prevention: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Nutr Cancer 62:896–918

    CAS  PubMed  Google Scholar 

  45. Rayman MP, Stranges S (2013) Epidemiology of selenium and type 2 diabetes: can we make sense of it? Free Radic Biol Med 65:1557–1564

    CAS  PubMed  Google Scholar 

  46. Inzucchi SE (2013) Diagnosis of diabetes. N Engl J Med 368:193

    CAS  PubMed  Google Scholar 

  47. Faure P (2003) Protective effects of antioxidant micronutrients (vitamin E, zinc and selenium) in type 2 diabetes mellitus. Clin Chem Lab Med 41:995–998

    CAS  PubMed  Google Scholar 

  48. Boosalis MG (2008) The role of selenium in chronic disease. Nutr Clin Pract 23:152–160

    PubMed  Google Scholar 

  49. Bleys J, Navas-Acien A, Guallar E (2007) Serum selenium and diabetes in U.S. adults. Diabetes Care 30:829–834

    CAS  PubMed  Google Scholar 

  50. Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, Cappuccio FP, Ceriello A, Reid ME (2007) Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med 147:217–223

    PubMed  Google Scholar 

  51. Stranges S, Sieri S, Vinceti M, Grioni S, Guallar E, Laclaustra M, Muti P, Berrino F, Krogh V (2010) A prospective study of dietary selenium intake and risk of type 2 diabetes. BMC Public Health 10:564

    PubMed  PubMed Central  Google Scholar 

  52. Wei J, Zeng C, Gong QY, Yang HB, Li XX, Lei GH, Yang TB (2015) The association between dietary selenium intake and diabetes: a cross-sectional study among middle-aged and older adults. Nutr J 14:18

    PubMed  PubMed Central  Google Scholar 

  53. Galan-Chilet I, Grau-Perez M, De Marco G, Guallar E, Martin-Escudero JC, Dominguez-Lucas A, Gonzalez-Manzano I, Lopez-Izquierdo R, Briongos-Figuero LS, Redon J, Chaves FJ, Tellez-Plaza M (2017) A gene-environment interaction analysis of plasma selenium with prevalent and incident diabetes: the Hortega study. Redox Biol 12:798–805

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moon S, Chung HS, Yu JM, Yoo HJ, Park JH, Kim DS, Park YK, Yoon SN (2019) Association between serum selenium level and the prevalence of diabetes mellitus in U.S. population. J Trace Elem Med Biol 52:83–88

    CAS  PubMed  Google Scholar 

  55. Ogawa-Wong AN, Berry MJ, Seale LA (2016) Selenium and metabolic disorders: an emphasis on type 2 diabetes risk. Nutrients 8:80

    PubMed  PubMed Central  Google Scholar 

  56. Wang XL, Yang TB, Wei J, Lei GH, Zeng C (2016) Association between serum selenium level and type 2 diabetes mellitus: a non-linear dose-response meta-analysis of observational studies. Nutr J 15:48

    PubMed  PubMed Central  Google Scholar 

  57. Vinceti M, Filippini T, Rothman KJ (2018) Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol 33:789–810

    PubMed  Google Scholar 

  58. Kim J, Chung HS, Choi MK, Roh YK, Yoo HJ, Park JH, Kim DS, Yu JM, Moon S (2019) Association between serum selenium level and the presence of diabetes mellitus: a meta-analysis of observational studies. Diabetes Metab J 43. https://doi.org/10.4093/dmj.2018.0123

    Google Scholar 

  59. Jacobs ET, Lance P, Mandarino LJ, Ellis NA, Chow HS, Foote J, Martinez JA, Hsu CP, Batai K, Saboda K, Thompson PA (2019) Selenium supplementation and insulin resistance in a randomized, clinical trial. BMJ Open Diabetes Res Care 7:e000613

    PubMed  PubMed Central  Google Scholar 

  60. Askari G, Iraj B, Salehi-Abargouei A, Fallah AA, Jafari T (2015) The association between serum selenium and gestational diabetes mellitus: a systematic review and meta-analysis. J Trace Elem Med Biol 29:195–201

    CAS  PubMed  Google Scholar 

  61. Kong FJ, Ma LL, Chen SP, Li G, Zhou JQ (2016) Serum selenium level and gestational diabetes mellitus: a systematic review and meta-analysis. Nutr J 15:94

    PubMed  PubMed Central  Google Scholar 

  62. Yu SS, Du JL (2017) Selenoprotein S: a therapeutic target for diabetes and macroangiopathy? Cardiovasc Diabetol 16:101

    PubMed  PubMed Central  Google Scholar 

  63. Cox AJ, Lehtinen AB, Xu J, Langefeld CD, Freedman BI, Carr JJ, Bowden DW (2013) Polymorphisms in the Selenoprotein S gene and subclinical cardiovascular disease in the Diabetes Heart Study. Acta Diabetol 50:391–399

    CAS  PubMed  Google Scholar 

  64. Akbaba G, Akbaba E, Sahin C, Kara M (2018) The relationship between gestational diabetes mellitus and selenoprotein-P plasma 1 (SEPP1) gene polymorphisms. Gynecol Endocrinol 34:849–852

    CAS  PubMed  Google Scholar 

  65. Méplan C, Hesketh J (2014) Selenium and cancer: a story that should not be forgotten-insights from genomics. Cancer Treat Res 159:145–166

    PubMed  Google Scholar 

  66. Méplan C, Rohrmann S, Steinbrecher A, Schomburg L, Jansen E, Linseisen J, Hesketh J (2012) Polymorphisms in thioredoxin reductase and selenoprotein K genes and selenium status modulate risk of prostate cancer. PLoS One 7:e48709

    PubMed  PubMed Central  Google Scholar 

  67. Gerstenberger JP, Bauer SR, Van Blarigan EL, Sosa E, Song X, Witte JS, Carroll PR, Chan JM (2015) Selenoprotein and antioxidant genes and the risk of high-grade prostate cancer and prostate cancer recurrence. Prostate 75:60–69

    CAS  PubMed  Google Scholar 

  68. Steinbrecher A, Méplan C, Hesketh J, Schomburg L, Endermann T, Jansen E, Akesson B, Rohrmann S, Linseisen J (2010) Effects of selenium status and polymorphisms in selenoprotein genes on prostate cancer risk in a prospective study of European men. Cancer Epidemiol Biomark Prev 19:2958–2968

    CAS  Google Scholar 

  69. Xie W, Yang M, Chan J, Sun T, Mucci LA, Penney KL, Lee GS, Kantoff PW (2016) Association of genetic variations of selenoprotein genes, plasma selenium levels, and prostate cancer aggressiveness at diagnosis. Prostate 76:691–699

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Peters U, Chatterjee N, Hayes RB, Schoen RE, Wang Y, Chanock SJ, Foster CB (2008) Variation in the selenoenzyme genes and risk of advanced distal colorectal adenoma. Cancer Epidemiol Biomark Prev 17:1144–1154

    CAS  Google Scholar 

  71. Mohammaddoust S, Salehi Z, Saeidi Saedi H (2018) SEPP1 and SEP15 gene polymorphisms and susceptibility to breast cancer. Br J Biomed Sci 75:36–39

    PubMed  Google Scholar 

  72. Li XX, Guan HJ, Liu JP, Guo YP, Yang Y, Niu YY, Yao LY, Yang YD, Yue HY, Meng LL, Cui XY, Yang XW, Gao JX (2015) Association of selenoprotein S gene polymorphism with ischemic stroke in a Chinese case-control study. Blood Coagul Fibrinolysis 26:131–135

    CAS  PubMed  Google Scholar 

  73. Ye Y, Bian W, Fu F, Hu J, Liu H (2018) Selenoprotein S inhibits inflammation-induced vascular smooth muscle cell calcification. J Biol Inorg Chem 23:739–751

    CAS  PubMed  Google Scholar 

  74. Strauss E, Oszkinis G, Staniszewski R (2014) SEPP1 gene variants and abdominal aortic aneurysm: gene association in relation to metabolic risk factors and peripheral arterial disease coexistence. Sci Rep 4:7061

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Strauss E, Tomczak J, Staniszewski R, Oszkinis G (2018) Associations and interactions between variants in selenoprotein genes, selenoprotein levels and the development of abdominal aortic aneurysm, peripheral arterial disease, and heart failure. PLoS One 13:e0203350

    PubMed  PubMed Central  Google Scholar 

  76. Du XA, Wang HM, Dai XX, Kou Y, Wu RP, Chen Q, Cao JL, Mo XY, Xiong YM (2015) Role of selenoprotein S (SEPS1) -105G>A polymorphisms and PI3K/Akt signaling pathway in Kashin-Beck disease. Osteoarthr Cartil 23:210–216

    CAS  Google Scholar 

  77. Wu R, Zhang R, Xiong Y, Sun W, Li Y, Yang X, Liu J, Jiang Y, Guo H, Mo X, Cao J (2017) The study on polymorphisms of Sep15 and TrxR2 and the expression of AP-1 signaling pathway in Kashin-Beck disease. Bone 120:239–245

    Google Scholar 

  78. Li M, Liu B, Li L, Zhang C, Zhou Q (2015) Association studies of SEPS1 gene polymorphisms with Hashimoto’s thyroiditis in Han Chinese. J Hum Genet 60:427–433

    CAS  PubMed  Google Scholar 

  79. Hellwege JN, Palmer ND, Ziegler JT, Langefeld CD, Lorenzo C, Norris JM, Takamura T, Bowden DW (2014) Genetic variants in selenoprotein P plasma 1 gene (SEPP1) are associated with fasting insulin and first phase insulin response in Hispanics. Gene 534:33–39

    CAS  PubMed  Google Scholar 

  80. Vinceti M, Filippini T, Cilloni S, Crespi CM (2017) The epidemiology of selenium and human cancer. Adv Cancer Res 136:1–48

    CAS  PubMed  Google Scholar 

  81. Fontelles CC, Ong TP (2017) Selenium and breast cancer risk: focus on cellular and molecular mechanisms. Adv Cancer Res 136:173–192

    CAS  PubMed  Google Scholar 

  82. Klein EA, Thompson IM Jr, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, Minasian LM, Ford LG, Parnes HL, Gaziano JM, Karp DD, Lieber MM, Walther PJ, Klotz L, Parsons JK, Chin JL, Darke AK, Lippman SM, Goodman GE, Meyskens FL Jr, Baker LH (2011) Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306:1549–1556

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Thompson PA, Ashbeck EL, Roe DJ, Fales L, Buckmeier J, Wang F, Bhattacharyya A, Hsu CH, Chow HH, Ahnen DJ, Boland CR, Heigh RI, Fay DE, Hamilton SR, Jacobs ET, Martinez ME, Alberts DS, Lance P (2016) Selenium supplementation for prevention of colorectal adenomas and risk of associated type 2 diabetes. J Natl Cancer Inst 108:152

    Google Scholar 

  84. Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M, Zeegers MP, Horneber M, D’Amico R, Crespi CM (2018) Selenium for preventing cancer. Cochrane Database Syst Rev (1):CD005195

  85. Kuria A, Fang X, Li M, Han H, He J, Aaseth JO, Cao Y (2018) Does dietary intake of selenium protect against cancer? A systematic review and meta-analysis of population-based prospective studies. Crit Rev Food Sci Nutr 2018:1–11

    Google Scholar 

  86. Cai X, Wang C, Yu W, Fan W, Wang S, Shen N, Wu P, Li X, Wang F (2016) Selenium exposure and cancer risk: an updated meta-analysis and meta-regression. Sci Rep 6:19213

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang L, Pascal M, Wu XH (2013) Review of selenium and prostate cancer prevention. Asian Pac J Cancer Prev 14:2181–2184

    PubMed  Google Scholar 

  88. Hurst R, Hooper L, Norat T, Lau R, Aune D, Greenwood DC, Vieira R, Collings R, Harvey LJ, Sterne JA, Beynon R, Savović J, Fairweather-Tait SJ (2012) Selenium and prostate cancer: systematic review and meta-analysis. Am J Clin Nutr 96:111–122

    CAS  PubMed  Google Scholar 

  89. Cui Z, Liu D, Liu C, Liu G (2017) Serum selenium levels and prostate cancer risk: a MOOSE-compliant meta-analysis. Medicine (Baltimore) 96:e5944

    CAS  Google Scholar 

  90. Sayehmiri K, Azami M, Mohammadi Y, Soleymani A, Tardeh Z (2018) The association between selenium and prostate cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev 19:1431–1437

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kok DE, Kiemeney LA, Verhaegh GW, Schalken JA, van Lin EN, Sedelaar JP, Witjes JA, Hulsbergen-van de Kaa CA, van t’Veer P, Kampman E, Afman LA (2017) A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate. Oncotarget 8:10565–10579

    PubMed  PubMed Central  Google Scholar 

  92. Jayaprakash V, Marshall JR (2011) Selenium and other antioxidants for chemoprevention of gastrointestinal cancers. Best Pract Res Clin Gastroenterol 25:507–518

    CAS  PubMed  Google Scholar 

  93. Ou Y, Jiang B, Wang X, Ma W, Guo J (2012) Selenium and colorectal adenomas risk: a meta-analysis. Nutr Cancer 64:1153–1159

    CAS  PubMed  Google Scholar 

  94. Gong HY, He JG, Li BS (2016) Meta-analysis of the association between selenium and gastric cancer risk. Oncotarget 7:15600–15605

    PubMed  PubMed Central  Google Scholar 

  95. Hong B, Huang L, Mao N, Xiong T, Li C, Hu L, Du Y (2016) Association between selenium levels and oesophageal adenocarcinoma risk: evidence from a meta-analysis. Biosci Rep 36:e00356

    PubMed  PubMed Central  Google Scholar 

  96. Ullah H, Liu G, Yousaf B, Ali MU, Abbas Q, Munir MAM, Mian MM (2018) Developmental selenium exposure and health risk in daily foodstuffs: a systematic review and meta-analysis. Ecotoxicol Environ Saf 149:291–306

    CAS  PubMed  Google Scholar 

  97. Méplan C, Johnson IT, Polley AC, Cockell S, Bradburn DM, Commane DM, Arasaradnam RP, Mulholland F, Zupanic A, Mathers JC, Hesketh J (2016) Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. FASEB J 30:2812–2825

    PubMed  Google Scholar 

  98. Babaknejad N, Sayehmiri F, Sayehmiri K, Rahimifar P, Bahrami S, Delpesheh A, Hemati F, Alizadeh S (2014) The relationship between selenium levels and breast cancer: a systematic review and meta-analysis. Biol Trace Elem Res 159:1–7

    CAS  PubMed  Google Scholar 

  99. Rusolo F, Capone F, Pasquale R, Angiolillo A, Colonna G, Castello G, Costantini M, Costantini S (2017) Comparison of the seleno-transcriptome expression between human non-cancerous mammary epithelial cells and two human breast cancer cell lines. Oncol Lett 13:2411–2417

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cardoso BR, Roberts BR, Bush AI, Hare DJ (2015) Selenium, selenoproteins and neurodegenerative diseases. Metallomics 7:1213–1228

    CAS  PubMed  Google Scholar 

  101. Du X, Wang C, Liu Q (2016) Potential roles of selenium and selenoproteins in the prevention of Alzheimer’s disease. Curr Top Med Chem 16:835–848

    CAS  PubMed  Google Scholar 

  102. Ellwanger JH, Franke SI, Bordin DL, Prá D, Henriques JA (2016) Biological functions of selenium and its potential influence on Parkinson’s disease. An Acad Bras Cienc 88:1655–1674

    CAS  PubMed  Google Scholar 

  103. Chen YG (2018) Research progress in the pathogenesis of Alzheimer’s disease. Chin Med J 131:1618–1624

    PubMed  PubMed Central  Google Scholar 

  104. Kumar K, Kumar A, Keegan RM, Deshmukh R (2018) Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother 98:297–307

    CAS  PubMed  Google Scholar 

  105. Koç ER, Ilhan A, Aytürk Z, Acar B, Gürler M, Altuntaş A, Karapirli M, Bodur AS (2015) A comparison of hair and serum trace elements in patients with Alzheimer disease and healthy participants. Turk J Med Sci 45:1034–1039

    PubMed  Google Scholar 

  106. Rita Cardoso B, Silva Bandeira V, Jacob-Filho W, Franciscato Cozzolino SM (2014) Selenium status in elderly: relation to cognitive decline. J Trace Elem Med Biol 28:422–426

    PubMed  Google Scholar 

  107. Loef M, Schrauzer GN, Walach H (2011) Selenium and Alzheimer’s disease: a systematic review. J Alzheimers Dis 26:81–104

    CAS  PubMed  Google Scholar 

  108. Chmatalova Z, Vyhnalek M, Laczo J, Hort J, Pospisilova R, Pechova M, Skoumalova A (2017) Relation of plasma selenium and lipid peroxidation end products in patients with Alzheimer’s disease. Physiol Res 66:1049–1056

    CAS  PubMed  Google Scholar 

  109. Cardoso BR, Hare DJ, Bush AI, Li QX, Fowler CJ, Masters CL, Martins RN, Ganio K, Lothian A, Mukherjee S, Kapp EA, Roberts BR, AIBL research group (2017) Selenium levels in serum, red blood cells, and cerebrospinal fluid of Alzheimer’s disease patients: a report from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). J Alzheimers Dis 57:183–193

    CAS  PubMed  Google Scholar 

  110. Vaz FNC, Fermino BL, Haskel MVL, Wouk J, de Freitas GBL, Fabbri R, Montagna E, Rocha JBT, Bonini JS (2018) The relationship between copper, iron, and selenium levels and Alzheimer disease. Biol Trace Elem Res 181:185–191

    CAS  PubMed  Google Scholar 

  111. Reddy VS, Bukke S, Dutt N, Rana P, Pandey AK (2017) A systematic review and meta-analysis of the circulatory, erythrocellular and CSF selenium levels in Alzheimer’s disease: a metal meta-analysis (AMMA study-I). J Trace Elem Med Biol 42:68–75

    CAS  PubMed  Google Scholar 

  112. Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M, Stijnen T (2014) Plasma nutrient status of patients with Alzheimer’s disease: systematic review and meta-analysis. Alzheimers Dement 10:485–502

    PubMed  Google Scholar 

  113. de Wilde MC, Vellas B, Girault E, Yavuz AC, Sijben JW (2017) Lower brain and blood nutrient status in Alzheimer’s disease: results from meta-analyses. Alzheimers Dement (N Y) 3:416–431

    Google Scholar 

  114. Solovyev N, Drobyshev E, Bjørklund G, Dubrovskii Y, Lysiuk R, Rayman MP (2018) Selenium, selenoprotein P, and Alzheimer’s disease: is there a link? Free Radic Biol Med 127:124–133

    CAS  PubMed  Google Scholar 

  115. Cardoso BR, Busse AL, Hare DJ, Cominetti C, Horst MA, McColl G, Magaldi RM, Jacob-Filho W, Cozzolino SM (2016) Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake. Food Funct 7:825–833

    CAS  PubMed  Google Scholar 

  116. Aaseth J, Alexander J, Bjørklund G, Hestad K, Dusek P, Roos PM, Alehagen U (2016) Treatment strategies in Alzheimer’s disease: a review with focus on selenium supplementation. Biometals 29:827–839

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Iqbal J, Zhang K, Jin N, Zhao Y, Liu Q, Ni J, Shen L (2018) Selenium positively affects the proteome of 3 × Tg-AD mice cortex by altering the expression of various key proteins: unveiling the mechanistic role of selenium in AD prevention. J Neurosci Res 96:1798–1815

    CAS  PubMed  Google Scholar 

  118. Chen P, Wang L, Wang Y, Li S, Shen L, Liu Q, Ni J (2014) Phosphoproteomic profiling of selenate-treated Alzheimer’s disease model cells. PLoS One 9:e113307

    PubMed  PubMed Central  Google Scholar 

  119. Guo JD, Zhao X, Li Y, Li GR, Liu XL (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (review). Int J Mol Med 41:1817–1825

    CAS  PubMed  Google Scholar 

  120. Shahar A, Patel KV, Semba RD, Bandinelli S, Shahar DR, Ferrucci L, Guralnik JM (2010) Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord 25:1909–1915

    PubMed  PubMed Central  Google Scholar 

  121. Younes-Mhenni S, Aissi M, Mokni N, Boughammoura-Bouatay A, Chebel S, Frih-Ayed M, Kerkeni A, Bost M, Chazot G, Sfar MT, Sfar MH (2013) Serum copper, zinc and selenium levels in Tunisian patients with Parkinson’s disease. Tunis Med 91:402–405

    CAS  PubMed  Google Scholar 

  122. Maass F, Michalke B, Leha A, Boerger M, Zerr I, Koch JC, Tönges L, Bähr M, Lingor P (2018) Elemental fingerprint as a cerebrospinal fluid biomarker for the diagnosis of Parkinson’s disease. J Neurochem 145:342–351

    CAS  PubMed  Google Scholar 

  123. Mehrpour M, Kyani A, Tafazzoli M, Fathi F, Joghataie MT (2013) A metabonomics investigation of multiple sclerosis by nuclear magnetic resonance. Magn Reson Chem 51:102–109

    CAS  PubMed  Google Scholar 

  124. Socha K, Kochanowicz J, Karpińska E, Soroczyńska J, Jakoniuk M, Mariak Z, Borawska MH (2014) Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis. Nutr J 13:62

    PubMed  PubMed Central  Google Scholar 

  125. Alizadeh A, Mehrpour O, Nikkhah K, Bayat G, Espandani M, Golzari A, Jarahi L, Foroughipour M (2016) Comparison of serum concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls. Electron Physician 8:2759–2764

    PubMed  PubMed Central  Google Scholar 

  126. Vinceti M, Solovyev N, Mandrioli J, Crespi CM, Bonvicini F, Arcolin E, Georgoulopoulou E, Michalke B (2013) Cerebrospinal fluid of newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. Neurotoxicology 38:25–32

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mandrioli J, Michalke B, Solovyev N, Grill P, Violi F, Lunetta C, Conte A, Sansone VA, Sabatelli M, Vinceti M (2017) Elevated levels of selenium species in cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated gene mutations. Neurodegener Dis 17:171–180

    CAS  PubMed  Google Scholar 

  128. Peters TL, Beard JD, Umbach DM, Allen K, Keller J, Mariosa D, Sandler DP, Schmidt S, Fang F, Ye W, Kamel F (2016) Blood levels of trace metals and amyotrophic lateral sclerosis. Neurotoxicology 54:119–126

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Benstoem C, Goetzenich A, Kraemer S, Borosch S, Manzanares W, Hardy G, Stoppe C (2015) Selenium and its supplementation in cardiovascular disease--what do we know? Nutrients 7:3094–3118

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gharipour M, Sadeghi M, Behmanesh M, Salehi M, Nezafati P, Gharpour A (2017) Selenium homeostasis and clustering of cardiovascular risk factors: a systematic review. Acta Biomed 88:263–270

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ju W, Li X, Li Z, Wu GR, Fu XF, Yang XM, Zhang XQ, Gao XB (2017) The effect of selenium supplementation on coronary heart disease: a systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol 44:8–16

    CAS  PubMed  Google Scholar 

  132. Zhang X, Liu C, Guo J, Song Y (2016) Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials. Eur J Clin Nutr 70:162–169

    CAS  PubMed  Google Scholar 

  133. Li Q, Liu M, Hou J, Jiang C, Li S, Wang T (2013) The prevalence of Keshan disease in China. Int J Cardiol 168:1121–1126

    PubMed  Google Scholar 

  134. Lei C, Niu X, Ma X, Wei J (2011) Is selenium deficiency really the cause of Keshan disease? Environ Geochem Health 33:183–188

    CAS  PubMed  Google Scholar 

  135. Chen J (2012) An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr 21:320–326

    PubMed  Google Scholar 

  136. Zhou H, Wang T, Li Q, Li D (2018) Prevention of Keshan disease by selenium supplementation: a systematic review and meta-analysis. Biol Trace Elem Res 186:98–105

    CAS  PubMed  Google Scholar 

  137. Liu H, Yu F, Shao W, Ding D, Yu Z, Chen F, Geng D, Tan X, Lammi MJ, Guo X (2018) Associations between selenium content in hair and Kashin-Beck disease/Keshan disease in children in northwestern China: a prospective cohort study. Biol Trace Elem Res 184:16–23

    CAS  PubMed  Google Scholar 

  138. Wang S, Lv Y, Wang Y, Du P, Tan W, Lammi MJ, Guo X (2018) Network analysis of Se- and Zn-related proteins in the serum proteomics expression profile of the endemic dilated cardiomyopathy Keshan disease. Biol Trace Elem Res 183:40–48

    CAS  PubMed  Google Scholar 

  139. Guo X, Ma WJ, Zhang F, Ren FL, Qu CJ, Lammi MJ (2014) Recent advances in the research of an endemic osteochondropathy in China: Kashin-Beck disease. Osteoarthr Cartil 22:1774–1783

    CAS  Google Scholar 

  140. Yu FF, Liu H, Guo X (2016) Integrative multivariate logistic regression analysis of risk factors for Kashin-Beck disease. Biol Trace Elem Res 174:274–279

    CAS  PubMed  Google Scholar 

  141. Yang L, Zhao GH, Yu FF, Zhang RQ, Guo X (2016) Selenium and iodine levels in subjects with Kashin-Beck disease: a meta-analysis. Biol Trace Elem Res 170:43–54

    CAS  PubMed  Google Scholar 

  142. Xie D, Liao Y, Yue J, Zhang C, Wang Y, Deng C, Chen L (2018) Effects of five types of selenium supplementation for treatment of Kashin-Beck disease in children: a systematic review and network meta-analysis. BMJ Open 8:e017883

    PubMed  PubMed Central  Google Scholar 

  143. Wang S, Zhao G, Shao W, Liu H, Wang W, Wu C, Lammi MJ, Guo X (2019) The importance of Se-related genes in the chondrocyte of Kashin-Beck disease revealed by whole genomic microarray and network analysis. Biol Trace Elem Res 187:367–375

    CAS  PubMed  Google Scholar 

  144. Yang L, Zhang J, Li X, Xu C, Wang X, Guo X (2018) Expression profiles of selenium-related genes in human chondrocytes exposed to T-2 toxin and deoxynivalenol. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1560-2

    PubMed  Google Scholar 

  145. Zheng H, Wei J, Wang L, Wang Q, Zhao J, Chen S, Wei F (2018) Effects of selenium supplementation on Graves’ disease: a systematic review and meta-analysis. Evid Based Complement Alternat Med 2018:3763565

    PubMed  PubMed Central  Google Scholar 

  146. Winther KH, Wichman JE, Bonnema SJ, Hegedüs L (2017) Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis. Endocrine 55:376–385

    CAS  PubMed  Google Scholar 

  147. Baxter I (2015) Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? J Exp Bot 66:2127–2131

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Huang XY, Salt DE (2016) Plant ionomics: from elemental profiling to environmental adaptation. Mol Plant 9:787–797

    CAS  PubMed  Google Scholar 

  149. Konz T, Migliavacca E, Dayon L, Bowman G, Oikonomidi A, Popp J, Rezzi S (2017) ICP-MS/MS-based ionomics: a validated methodology to investigate the biological variability of the human ionome. J Proteome Res 16:2080–2090

    CAS  PubMed  Google Scholar 

  150. Li Q, Hu C, Lin J, Yang Z, Zhou Q, Yang R, Yuan H, Zhu X, Lv Y, Liang Q, Lv Z, Sun L, Zhang Y (2019) Urinary ionomic analysis reveals new relationship between minerals and longevity in a Han Chinese population. J Trace Elem Med Biol 53:69–75

    CAS  PubMed  Google Scholar 

  151. Malinouski M, Hasan NM, Zhang Y, Seravalli J, Lin J, Avanesov A, Lutsenko S, Gladyshev VN (2014) Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism. Nat Commun 5:3301

    PubMed  Google Scholar 

  152. Ma S, Lee SG, Kim EB, Park TJ, Seluanov A, Gorbunova V, Buffenstein R, Seravalli J, Gladyshev VN (2015) Organization of the mammalian ionome according to organ origin, lineage specialization, and longevity. Cell Rep 13:1319–1326

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ying HM, Zhang Y (2018) Progress on ionomics of complex diseases. Sheng Li Xue Bao 70:413–423

    PubMed  Google Scholar 

  154. Zheng L, Zhu HZ, Wang BT, Zhao QH, Du XB, Zheng Y, Jiang L, Ni JZ, Zhang Y, Liu Q (2016) Sodium selenate regulates the brain ionome in a transgenic mouse model of Alzheimer’s disease. Sci Rep 6:39290

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Xie Y, Liu Q, Zheng L, Wang B, Qu X, Ni J, Zhang Y, Du X (2018) Se-methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in Alzheimer model mice. Mol Nutr Food Res 62:e1800107

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 31771407) and the Science and Technology Innovation Committee of Shenzhen Municipality (JCYJ20180305124023495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, H., Zhang, Y. Systems Biology of Selenium and Complex Disease. Biol Trace Elem Res 192, 38–50 (2019). https://doi.org/10.1007/s12011-019-01781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01781-9

Keywords

Navigation