Skip to main content
Log in

Selenium and Other Elements in Wheat (Triticum aestivum) and Wheat Bread from a Seleniferous Area

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to assess the levels of Se, as well as other essential and toxic trace elements in wheat grains and traditional Roti-bread from whole-grain flour in a seleniferous area of Punjab (India) using inductively-coupled plasma mass-spectrometry. Wheat grain and bread selenium levels originating from seleniferous areas exceeded the control values by a factor of more than 488 and 179, respectively. Se-rich wheat was also characterized by significantly increased Cu and Mn levels. Se-rich bread also contained significantly higher levels of Cr, Cu, I, Mn, and V. The level of Li and Sr was reduced in both Se-enriched wheat and bread samples. Roti bread from Se-enriched wheat was also characterized by elevated Al, Cd, and Ni, as well as reduced As and Hg content as compared to the respective control values. Se intake with Se-rich bread was estimated as more than 13,600% of RDA. Daily intake of Mn with both Se-unfortified and Se-fortified bread was 133% and 190% of RDA. Therefore, Se-rich bread from wheat cultivated on a seleniferous area of Punjab (India) may be considered as a potent source of selenium, although Se status should be monitored throughout dietary intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kieliszek M, Błażejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 29(5):713–718. https://doi.org/10.1016/j.nut.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  2. Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830(4):3112–3120. https://doi.org/10.1016/j.bbagen.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  3. Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren F-Z, Xu S-W, Wang X-L, Lei XG (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of Se-deficient chicks. J Nutr 143(5):613–619. https://doi.org/10.3945/jn.112.172395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In Selinus O (ed). Essent Med Geol:375–416 https://doi.org/10.1007/978-94-007-4375-5_16

    Google Scholar 

  5. Rayman M (2017) Selenium intake and status in health & disease. Free Radic Biol Med 112:5. https://doi.org/10.1016/j.freeradbiomed.2017.10.353

    Article  Google Scholar 

  6. Jones GD, Droz B, Greve P, Gottschalk P, Poffet D, McGrath SP, Seneviratne SI, Smith P, Winkel LH (2017) Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci U S A 114:2848–2853. https://doi.org/10.1073/pnas.1611576114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vinceti M, Filippini T, Rothman KJ (2018) Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol 33(9):789–810. https://doi.org/10.1007/s10654-018-0422-8

    Article  PubMed  Google Scholar 

  8. Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y (2014) Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett 230(2):295–303. https://doi.org/10.1016/j.toxlet.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  9. Ötles S, Cagindi Ö (2006) Cereal based functional foods and nutraceuticals. Acta Sci Pol Technol Aliment 5:107–112

    Google Scholar 

  10. White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593. https://doi.org/10.1016/j.tplants.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  11. Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91(5):1484S–1491S. https://doi.org/10.3945/ajcn.2010.28674J

    Article  CAS  PubMed  Google Scholar 

  12. Filippini T, Cilloni S, Malavolti M, Violi F, Malagoli C, Tesauro M, Bottecchi I, Ferrari A, Vescovi L, Vinceti M (2018) Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a northern Italy community. JTEMB 50:508–517. https://doi.org/10.1016/j.jtemb.2018.03.001

    Article  CAS  Google Scholar 

  13. Hart DJ, Fairweather-Tait SJ, Broadley MR, Dickinson SJ, Foot I, Knott P, McGrath SP, Mowat H, Norman K, Scott PR, Stroud JL, Tucker M, White PJ, Zhao FJ, Hurst R (2011) Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem 126(4):1771–1778. https://doi.org/10.1016/j.foodchem.2010.12.079

    Article  CAS  PubMed  Google Scholar 

  14. dos Reis AR, El-Ramady H, Santos EF, Gratão PL, Schomburg L (2017) Overview of selenium deficiency and toxicity worldwide: affected areas, selenium-related health issues, and case studies. In: Pilon-Smits E, Winkel L, Lin ZQ (eds) Selenium in plants. Plant Ecophysiology, p 209–230. https://doi.org/10.1007/978-3-319-56249-0_13

    Google Scholar 

  15. Dhillon KS, Dhillon SK (2019) Genesis of seleniferous soils and associated animal and human health problems. Adv Agron 154:2–296. https://doi.org/10.1016/bs.agron.2018.11.001

    Article  Google Scholar 

  16. Vinceti M, Filippini T, Wise LA (2018) Environmental selenium and human health: an update. Curr Environ Health Rep 5(4):464–485. https://doi.org/10.1007/s40572-018-0213-0

    Article  PubMed  Google Scholar 

  17. Ducsay L, Ložek O, Varga L (2009) The influence of selenium soil application on its content in spring wheat. Plant Soil Environ 55:80–84

    Article  CAS  Google Scholar 

  18. Boldrin PF, Faquin V, Ramos SJ, Boldrin KVF, Ávila FW, Guilherme LRG (2013) Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31(2):238–244. https://doi.org/10.1016/j.jfca.2013.06.002

    Article  CAS  Google Scholar 

  19. Jaiswal SK, Prakash R, Acharya R, Reddy AVR, Prakash NT (2012) Selenium content in seed, oil and oil cake of Se hyperaccumulated Brassica juncea (Indian mustard) cultivated in a seleniferous region of India. Food Chem 134:401–404. https://doi.org/10.1016/j.foodchem.2012.02.140

    Article  CAS  Google Scholar 

  20. Skalnaya МG, Jaiswal SK, Prakash R, Prakash NT, Grabeklis AR, Zhegalova IV, Zhang F, Guo X, Tinkov AA, Skalny AV (2017) The effect of cultivation on seleniferous soils on the level of macroelements in cereals. Trace Elem Med 18:8–12. https://doi.org/10.19112/2413-6174-2017-18-4-8-12 [In Russian]

    Article  Google Scholar 

  21. Pazurkiewicz-Kocot K, Kita A, Pietruszka M (2008) Effect of selenium on magnesium, iron, manganese, copper, and zinc accumulation in corn treated by indole-3-acetic acid. Commun Soil Sci Plant Anal 39:2303–2318. https://doi.org/10.1080/00103620802292343

    Article  CAS  Google Scholar 

  22. Feng R, Wei C, Tu S (2013a) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68. https://doi.org/10.1016/j.envexpbot.2012.09.002

    Article  CAS  Google Scholar 

  23. Wei YH, Zhang JY, Luo LG, Tu TH (2014) Simultaneous determination of Se, trace elements and major elements in Se-rich rice by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) after microwave digestion. Food Chem 159:507–511. https://doi.org/10.1016/j.foodchem.2014.03.057

    Article  CAS  PubMed  Google Scholar 

  24. Tobiasz A, Walas S, Filek M, Mrowiec H, Samsel K, Sieprawska A, Hartikainen H (2014) Effect of selenium on distribution of macro-and micro-elements to different tissues during wheat ontogeny. Biol Plant 58:370–374. https://doi.org/10.1007/s10535-014-0407-8

    Article  CAS  Google Scholar 

  25. Skalny AV, Burtseva TI, Salnikova EV, Ajsuvakova OP, Skalnaya MG, Kirichuk AA, Tinkov AA (2019) Geographic variation of environmental, food, and human hair selenium content in an industrial region of Russia. Environ Res 171:293–301. https://doi.org/10.1016/j.envres.2019.01.038

    Article  CAS  PubMed  Google Scholar 

  26. Lyons GH, Genc Y, Stangoulis JC, Palmer LT, Graham RD (2005) Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res 103(2):155–168. https://doi.org/10.1385/BTER:103:2:155

    Article  CAS  PubMed  Google Scholar 

  27. Cubadda F, Aureli F, Raggi A, Carcea M (2009) Effect of milling, pasta making and cooking on minerals in durum wheat. J Cereal Sci 49(1):92–97. https://doi.org/10.1016/j.jcs.2008.07.008

    Article  CAS  Google Scholar 

  28. Dhillon KS, Dhillon SK (1991) Selenium toxicity in soils, plants and animals in some parts of Punjab, India. Int J Environ Res 37:15–24. https://doi.org/10.1080/00207239108710613

    Article  CAS  Google Scholar 

  29. Mir SA, Naik HR, Shah MA, Mir MM, Wani MH, Bhat MA (2014) Indian flat breads: a review. Food Nutr Sci 5(06):549–561. https://doi.org/10.4236/fns.2014.56065

    Article  Google Scholar 

  30. Nardi EP, Evangelista FS, Tormen L, Saint TD, Curtius AJ, de Souza S, Barbosa F Jr (2009) The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem 112(3):727–732. https://doi.org/10.1016/j.foodchem.2008.06.010

    Article  CAS  Google Scholar 

  31. D’Ilio S, Violante N, Majorani C, Petrucci F (2011) Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: still a challenge? A review. Anal Chim Acta 698(1–2):6–13. https://doi.org/10.1016/j.aca.2011.04.052

    Article  CAS  PubMed  Google Scholar 

  32. Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38(2):232–242. https://doi.org/10.1016/S0273-2300(02)00020-X

    Article  CAS  PubMed  Google Scholar 

  33. World Health Organization (2010a) Exposure to arsenic: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/arsenic.pdf. Accessed March 13, 2019

    Google Scholar 

  34. World Health Organization (2010b) Exposure to cadmium: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/cadmium.pdf. Accessed March 13, 2019

    Google Scholar 

  35. World Health Organization (2007) Exposure to mercury: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/mercury.pdf. Accessed March 13, 2019

    Google Scholar 

  36. World Health Organization (2010c) Exposure to lead: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/lead.pdf. Accessed March 13, 2019

    Google Scholar 

  37. Cubadda F, Aureli A, Ciardullo S, D’Amato M, Raggi A, Acharya R, Reddy AVR, Tejo Prakash N (2010) Changes in selenium speciation associated with increasing tissue concentration of selenium in wheat grain. J Agric Food Chem 58:2295–2301. https://doi.org/10.1021/jf903004a

    Article  CAS  PubMed  Google Scholar 

  38. Aureli F, Ouerdane L, Bierla K, Szpunar J, Tejo Prakash N, Cubadda F (2012) Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops. Metallomics 4:968–978. https://doi.org/10.1039/c2mt20085f

    Article  CAS  PubMed  Google Scholar 

  39. Skalnaya MG, Jaiswal SK, Prakash R, Prakash NT, Grabeklis AR, Zhegalova IV, Zhang F, Guo X, Tinkov AA, Skalny AV (2018) The level of toxic elements in edible crops from seleniferous area (Punjab, India). Biol Trace Elem Res 184:523–528. https://doi.org/10.1007/s12011-017-1216-7

    Article  CAS  PubMed  Google Scholar 

  40. Lee S, Woodard HJ, Doolittle JJ (2011a) Selenium uptake response among selected wheat (Triticum aestivum) varieties and relationship with soil selenium fractions. Soil Sci Plant Nutr 57:823–832. https://doi.org/10.1080/00380768.2011.641909

    Article  CAS  Google Scholar 

  41. Keskinen R, Turakainen M, Hartikainen H (2010) Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil 333:301–313. https://doi.org/10.1007/s11104-010-0345-y

    Article  CAS  Google Scholar 

  42. Lyons GH, Stangoulis JC, Graham RD (2005) Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 270:179–188. https://doi.org/10.1007/s11104-004-1390-1

    Article  CAS  Google Scholar 

  43. Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206. https://doi.org/10.1007/s11104-005-7011-9

    Article  CAS  Google Scholar 

  44. Eich-Greatorex S, Sogn TA, Øgaard AF, Aasen I (2007) Plant availability of inorganic and organic selenium fertiliser as influenced by soil organic matter content and pH. Nutr Cycl Agroecosyst 79:221–231. https://doi.org/10.1007/s10705-007-9109-3

    Article  CAS  Google Scholar 

  45. Lee S, Woodard HJ, Doolittle JJ (2011b) Effect of phosphate and sulfate fertilizers on selenium uptake by wheat (Triticum aestivum). Soil Sci Plant Nutr 57:696–704. https://doi.org/10.1080/00380768.2011.623282

    Article  CAS  Google Scholar 

  46. Drahoňovský J, Száková J, Mestek O, Tremlová J, Kaňa A, Najmanová J, Tlustoš P (2016) Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environ Exp Bot 125:12–19. https://doi.org/10.1016/j.envexpbot.2016.01.006

    Article  CAS  Google Scholar 

  47. Landberg T, Greger M (1994) Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum). Physiol Plant 90:637–644. https://doi.org/10.1111/j.1399-3054.1994.tb02518.x

    Article  CAS  Google Scholar 

  48. Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468. https://doi.org/10.1007/s11104-009-0171-2

    Article  CAS  Google Scholar 

  49. Yáñez Barrientes E, Rodríguez Flores C, Wrobel K, Wrobel K (2012) Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. J Mex Chem Soc 56:3–9

    Google Scholar 

  50. Kleiber T, Krzesiński W, Przygocka-Cyna K, Spiżewski T (2018) Alleviation effect of selenium on manganese stress of plants. Ecol Chem Eng S 25:143–152. https://doi.org/10.1515/eces-2018-0010

    Article  CAS  Google Scholar 

  51. Hasanuzzaman M, Nahar K, Fujita M (2014) Silicon and selenium: two vital trace elements that confer abiotic stress tolerance to plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, London, pp 377–422. https://doi.org/10.1016/B978-0-12-800876-8.00016-3

    Chapter  Google Scholar 

  52. Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153:1871–1877. https://doi.org/10.1104/pp.110.15786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ghosh S, Biswas AK (2017) Selenium modulates growth and thiol metabolism in wheat (Triticum aestivum L.) during arsenic stress. Am J Plant Sci 8(03):363–389. https://doi.org/10.4236/ajps.2017.83026

    Article  CAS  Google Scholar 

  54. Chen S, Zhang C, Zhang Q, Fun M, Sun X (2009) Study on interaction between selenium and mercury in the seedling stage of winter wheat. Guizhou Agric Sci (1):28–29

  55. Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996) Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bull Environ Contam Toxicol 56(3):419–424. https://doi.org/10.1007/s001289900060

    Article  CAS  PubMed  Google Scholar 

  56. Ertl K, Goessler W (2018) Grains, whole flour, white flour, and some final goods: an elemental comparison. Eur Food Res Technol 244(11):2065–2075. https://doi.org/10.1007/s00217-018-3117-1

    Article  CAS  Google Scholar 

  57. Teklić T, Lončarić Z, Kovačević V, Singh BR (2013) Metallic trace elements in cereal grain–a review: how much metal do we eat? Food Energy Secur 2(2):81–95. https://doi.org/10.1002/fes3.24

    Article  Google Scholar 

  58. Cardoso BR, Duarte GBS, Reis BZ, Cozzolino SM (2017) Brazil nuts: nutritional composition, health benefits and safety aspects. Food Res Int 100:9–18. https://doi.org/10.1016/j.foodres.2017.08.036

    Article  CAS  PubMed  Google Scholar 

  59. Stockler-Pinto MB, Mafra D, Farage NE, Boaventura GT, Cozzolino SMF (2010) Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition 26(11–12):1065–1069. https://doi.org/10.1016/j.nut.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  60. Martens IB, Cardoso BR, Hare DJ, Niedzwiecki MM, Lajolo FM, Martens A, Cozzolino SM (2015) Selenium status in preschool children receiving a Brazil nut–enriched diet. Nutrition 31(11–12):1339–1343. https://doi.org/10.1016/j.nut.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  61. Vinceti M, Chawla R, Filippini T, Dutt C, Cilloni S, Loomba R, Whelton P (2019) Blood pressure levels and hypertension prevalence in a high selenium environment: results from a cross-sectional study. Nutr Metab Cardiovasc Dis 29(4):398–408. https://doi.org/10.1016/j.numecd.2019.01.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The current investigation is supported by the Russian Foundation for Basic Research within project no. 17-55-45027 and Department of Science and Technology, Government of India (INT/RUS/RFBR/P-252) “Localization of selenium and other trace elements in edible crops cultivated in seleniferous soils.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tinkov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalnaya, M.G., Tinkov, A.A., Prakash, N.T. et al. Selenium and Other Elements in Wheat (Triticum aestivum) and Wheat Bread from a Seleniferous Area. Biol Trace Elem Res 192, 10–17 (2019). https://doi.org/10.1007/s12011-019-01776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01776-6

Keywords

Navigation