Skip to main content
Log in

A Review on the Role of Chromium Supplementation in Ruminant Nutrition—Effects on Productive Performance, Blood Metabolites, Antioxidant Status, and Immunocompetence

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

With the increase in the global herd, the use of metabolic modifiers has become an important area for many researchers looking for a supraphysiological diet to improve production parameters. For improving the performance of high yielding cows, the optimal balance of all nutrients including microminerals is important. Chromium (Cr) is one of the important micronutrients which plays an important role in metabolism of ruminants. Experimental studies have found that Cr could change performance, immune responses, glucose and fatty acid metabolism, and antioxidant status in dairy cows. In some studies, Cr supplementation improved dry matter intake, milk production, and milk composition of dairy cows in the early, mid, or late stage of lactation. Also, in some studies, performance of growing animal, immune response, and some blood parameters responded positively to Cr supplementation. In conclusion, the effects of Cr supplementation on performance of ruminants are inconsistent; however, its long-term effects on health, productivity, immune system, and antioxidant activity of ruminants still need to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig .1

Similar content being viewed by others

References

  1. Schwarz K, Walter M (1959) Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys 4:292–295

    Article  Google Scholar 

  2. McCarty MF (1993) Homologous physiological effects of phenformin and chromium picolinate. Med Hypotheses 41:316–324. https://doi.org/10.1016/0306-9877(93)90073-Y

    Article  CAS  PubMed  Google Scholar 

  3. Anderson RA (1994) Stress effects on chromium nutrition of humans and farm animals. In: Lyons TP, Jacques KA (eds) Biotechnology in the feed industry. Nottingham University Press, Nottingham, pp 267–274

    Google Scholar 

  4. Al-Saiady MY, Al-Shaikh MA, Al-Mufarrej SI, Al-Showeimi TA, Mogawer HH, Dirrar A (2004) Effect of chelated chromium supplementation on lactation performance and blood parameters of Holstein cows under heat stress. Anim Feed Sci Technol 117:223–233. https://doi.org/10.1016/j.anifeedsci.2004.07.008

    Article  CAS  Google Scholar 

  5. Smith KL, Waldron MR, Ruzzi LC, Drackley JK, Socha MT, Overton TR (2008) Metabolism of dairy cows as affected by prepartum dietary carbohydrate source and supplementation with chromium throughout the periparturient period. J Dairy Sci 91:2011–2020. https://doi.org/10.3168/jds.2007-0696

    Article  CAS  PubMed  Google Scholar 

  6. Soltan MA (2010) Effect of dietary chromium supplementation on productive and reproductive performance of early lactating dairy cows under heat stress. J Anim Physiol Anim Nutr 94:264–272. https://doi.org/10.1111/j.1439-0396.2008.00913.x

    Article  CAS  Google Scholar 

  7. Bernhard BC, Burdick NC, Rathmann RJ, Carroll JA, Finck DN, Jennings MA, Young TR, Johnson BJ (2012) Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period. J Anim Sci 90:4857–4865. https://doi.org/10.2527/jas.2011-4982

    Article  CAS  PubMed  Google Scholar 

  8. Nikkhah A, Mirzaei M, Ghorbani GR, Khorvash M, Rahmani HR (2011) Chromium improves production and alters metabolism of early lactation cows in summer. J Anim Physiol Anim Nutr 95:81–89. https://doi.org/10.1111/j.1439-0396.2010.01007.x

    Article  CAS  Google Scholar 

  9. Kafilzadeh F, Karami Shabankareh H, Targhibi MR (2012) Effect of chromium supplementation on productive and reproductive performances and some metabolic parameters in late gestation and early lactation of dairy cows. Biol Trace Elem Res 149:42–49. https://doi.org/10.1007/s12011-012-9390-0

    Article  CAS  PubMed  Google Scholar 

  10. da Rocha JFX, Aires AR, Nunes MAG, Flores EMM, Kozloski GV, de Vargas AC, Farias LDA, da Silva CM, do Rego Leal ML (2013) Metabolism, intake, and digestibility of lambs supplemented with organic chromium. Biol Trace Elem Res 156:130–133. https://doi.org/10.1007/s12011-013-9831-4

    Article  CAS  PubMed  Google Scholar 

  11. Vargas-Rodriguez CF, Yuan K, Titgemeyer EC, Mamedova LK, Griswold KE, Bradford BJ (2014) Effects of supplemental chromium propionate and rumen-protected amino acids on productivity, diet digestibility, and energy balance of peak-lactation dairy cattle. J Dairy Sci 97:3815–3821. https://doi.org/10.3168/jds.2013-7767

    Article  CAS  PubMed  Google Scholar 

  12. Leiva T, Cooke RF, Brandão AP, Aboin AC, Ranches J, Vasconcelos JL (2015) Effects of excessive energy intake and supplementation with chromium propionate on insulin resistance parameters, milk production, and reproductive outcomes of lactating dairy cows. Livest Sci 180:121–128. https://doi.org/10.1016/j.livsci.2015.08.007

    Article  Google Scholar 

  13. Chang X, Mowat DN (1992) Supplemental chromium for stressed and growing feeder calves. J Anim Sci 70:559–565. https://doi.org/10.2527/1992.702559x

    Article  CAS  PubMed  Google Scholar 

  14. Burton JL, Mallard BA, Mowat DN (1993) Effects of supplemental chromium on immune responses of periparturient and early lactation dairy cows. J Anim Sci 71:1532–1539. https://doi.org/10.2527/1993.7161532x

    Article  CAS  PubMed  Google Scholar 

  15. Kegley EB, Spears JW (1995) Immune response, glucose metabolism, and performance of stressed feeder calves fed inorganic or organic chromium. J Anim Sci 73:2721–2726. https://doi.org/10.2527/1995.7392721x

    Article  CAS  PubMed  Google Scholar 

  16. Arthington JD, Corah LR, Minton JE, Elsasser TH, Blecha F (1997) Supplemental dietary chromium does not influence ACTH, cortisol, or immune responses in young calves inoculated with bovine herpesvirus-1. J Anim Sci 75:217–223. https://doi.org/10.2527/1997.751217x

    Article  CAS  PubMed  Google Scholar 

  17. Kegley EB, Spears JW, Brown TT (1997) Effect of shipping and chromium supplementation on performance, immune response, and disease resistance of steers. J Anim Sci 75:1956–1964. https://doi.org/10.2527/1997.7571956x

    Article  CAS  PubMed  Google Scholar 

  18. Gentry LR, Fernandez JM, Ward TL, White TW, Southern LL, Bidner TD, Thompson DL, Horohov DW, Chapa AM, Sahlu T (1999) Dietary protein and chromium tripicolinate in Suffolk wether lambs: effects on production characteristics, metabolic and hormonal responses, and immune status. J Anim Sci 77:1284–1294. https://doi.org/10.2527/1999.7751284x

    Article  CAS  PubMed  Google Scholar 

  19. Zha L, Zeng J, Sun S, Deng H, Luo H, Li W (2009) Chromium (III) nanoparticles affect hormone and immune responses in heat-stressed rats. Biol Trace Elem Res 129:157–169. https://doi.org/10.1007/s12011-008-8282-9

    Article  CAS  PubMed  Google Scholar 

  20. Sahin N, Akdemir F, Tuzcu M, Hayirli A, Smith MO, Sahin K (2010) Effects of supplemental chromium sources and levels on performance, lipid peroxidation and proinflammatory markers in heat-stressed quails. Anim Feed Sci Technol 159:143–149. https://doi.org/10.1016/j.anifeedsci.2010.06.004

    Article  CAS  Google Scholar 

  21. Ghazi S, Habibian M, Moeini MM, Abdolmohammadi A (2012) Effects of different levels of organic and inorganic chromium on growth performance and immunocompetence of broilers under heat stress. Biol Trace Elem Res 146:309–317. https://doi.org/10.1007/s12011-011-9260-1

    Article  CAS  PubMed  Google Scholar 

  22. Sirirat N, Lu JJ, Hung AT, Chen SY, Lien TF (2012) Effects different levels of nanoparticles chromium picolinate supplementation on growth performance, mineral retention, and immune responses in broiler chickens. J Agri Sci 4:48–58. https://doi.org/10.5539/jas.v4n12p48

    Article  Google Scholar 

  23. Eze DC, Okwor EC, Anike WU, Kazeem HM, Majiyagbe KA (2014) Effect of chromium propionate on the humoral immune response and performance of broilers vaccinated against Newcastle disease in the tropics. J Anim Plant Sci 24:1709–1715

    Google Scholar 

  24. Mousaie A, Valizadeh R, Naserian AA, Heidarpour M, Mehrjerdi HK (2014) Impacts of feeding selenium-methionine and chromium-methionine on performance, serum components, antioxidant status, and physiological responses to transportation stress of Baluchi ewe lambs. Biol Trace Elem Res 162:113–123. https://doi.org/10.1007/s12011-014-0162-x

    Article  CAS  PubMed  Google Scholar 

  25. Sumner JM, Valdez F, McNamara JP (2007) Effects of chromium propionate on response to an intravenous glucose tolerance test in growing Holstein heifers. J Dairy Sci 90:3467–3474. https://doi.org/10.3168/jds.2006-623

    Article  CAS  PubMed  Google Scholar 

  26. Hayirli A, Bremmer DR, Bertics SJ, Socha MT, Grummer RR (2001) Effect of chromium supplementation on production and metabolic parameters in periparturient dairy cows. J Dairy Sci 84:1218–1230. https://doi.org/10.3168/jds.S0022-0302(01)74583-3

    Article  CAS  PubMed  Google Scholar 

  27. Akers RM (2016) Lactation and the mammary gland. Blackwell Publishing, Ames, Iowa, IA

    Book  Google Scholar 

  28. Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med 52:1–18

    Article  CAS  Google Scholar 

  29. Jain SK (1986) An introduction to metallurgical analysis, chemical and instrumental. South Asia Books, Vikas Publishing House, New Delhi

    Google Scholar 

  30. Bailey CH (2014) Improved meta–analytic methods show no effect of chromium supplements on fasting glucose. Biol Trace Elem Res 157:1–8. https://doi.org/10.1007/s12011-013-9863-9

    Article  CAS  PubMed  Google Scholar 

  31. Bryan MA, Socha MT, Tomlinson DJ (2004) Supplementing intensively grazed late-gestation and early-lactation dairy cattle with chromium. J Dairy Sci 87:4269–4277. https://doi.org/10.3168/jds.S0022-0302(04)73571-7

    Article  CAS  PubMed  Google Scholar 

  32. Bratakos MS, Lazos ES, Bratakos SM (2002) Chromium content of selected Greek foods. Sci Total Environ 290:47–58. https://doi.org/10.1016/S0048-9697(01)01057-9

    Article  CAS  PubMed  Google Scholar 

  33. Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180:5–22. https://doi.org/10.1016/S0300-483X(02)00378-5

    Article  CAS  PubMed  Google Scholar 

  34. Doisy RJ, Streeten DHP, Freiberg JM, Schneider AJ (1976) Chromium metabolism in man and biochemical effects. In: Prasad AS, Oberleas D (eds) Trace elements in human health and disease: essential and toxic elements. Academic Press, New York, NY, pp 79–104

    Google Scholar 

  35. Gäbel G, Martens H, Suendermann M, Galfi P (1987) The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep. Exp Physiol 72:501–511. https://doi.org/10.1113/expphysiol.1987.sp003092

    Article  Google Scholar 

  36. Khan N, Choi JY, Nho EY, Jamila N, Habte G, Hong JH, Hwang IM, Kim KS (2014) Determination of minor and trace elements in aromatic spices by micro–wave assisted digestion and inductively coupled plasma-mass spectrometry. Food Chem 158:200–206. https://doi.org/10.1016/j.foodchem.2014.02.103

    Article  CAS  PubMed  Google Scholar 

  37. Chen NS, Tsai A, Dyer IA (1973) Effect of chelating agents on chromium absorption in rats. J Nutr 103:1182–1186

    Article  CAS  Google Scholar 

  38. Stoecker BJ (1999) Chromium absorption, safety, and toxicity. J Trace Elem Exp Med 12:163–169. https://doi.org/10.1002/(SICI)1520-670X(1999)12:2<163::AID-JTRA13>3.0.CO;2-3

    Article  CAS  Google Scholar 

  39. Ducros V (1992) Chromium metabolism. Biol Trace Elem Res 32:65–77. https://doi.org/10.1007/BF02784589

    Article  CAS  PubMed  Google Scholar 

  40. Vincent JB (2000) The biochemistry of chromium. J Nutr 130:715–718

    Article  CAS  Google Scholar 

  41. Vincent JB (2000) Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutr Res 58:67–72. https://doi.org/10.1111/j.1753-4887.2000.tb01841.x

    Article  CAS  Google Scholar 

  42. Lukaski HC (1999) Chromium as a supplement. Ann Rev Nutr 19:279–302. https://doi.org/10.1146/annurev.nutr.19.1.279

    Article  CAS  Google Scholar 

  43. Forbes RM, Erdman JJW (1983) Bioavailability of trace mineral elements. Ann Rev Nutr 3:213–231. https://doi.org/10.1146/annurev.nu.03.070183.001241

    Article  CAS  Google Scholar 

  44. GendleyMK (2009) Influence of chromium, zinc and selenium on nutrient utilization and blood biochemical parameters in goat fed on urea molasses mineral block supplemented diet. Dissertation, Indira Gandhi Krishi Vishwavidyalaya, Raipur

  45. Borel JS, Anderson RA (1984) Chromium. In: Frieden E (ed) Biochemistry of the essential ultratrace elements. Plenum Press, New York, NY, pp 175–199

    Chapter  Google Scholar 

  46. Ranhotra GS, Gelroth JA (1986) Effects of high chromium baker’s yeast on glucose tolerance and blood lipids in rats. Cereal Chem 63:411–413

    CAS  Google Scholar 

  47. Urberg M, Gemel MB (1987) Evidence for synergism between chromium and nicotinic acid in the control of glucose tolerance in elderly humans. Metabolism 36:896–899. https://doi.org/10.1016/0026-0495(87)90100-4

    Article  CAS  PubMed  Google Scholar 

  48. Anderson RA, Bryden NA, Polansky MM (1992) Dietary chromium intake. Biol Trace Elem Res 32:117–121. https://doi.org/10.1007/BF02784595

    Article  CAS  PubMed  Google Scholar 

  49. Hunt CD, Stoecker BJ (1996) Deliberations and evaluations of the approaches, endpoints and paradigms for boron, chromium and fluoride dietary recommendations. J Nutr 126:2441S–2451S

    Article  CAS  Google Scholar 

  50. Vincent JB (2010) Chromium: celebrating 50 years as an essential element? J Chem Soc Dalton Trans 39:3787–3794. https://doi.org/10.1039/B920480F

    Article  CAS  Google Scholar 

  51. Borguet F, Cornelis R, Lameire N (1990) Speciation of chromium in plasma and liver tissue of endstage renal failure patients on continuous ambulatory peritoneal dialysis. Biol Trace Elem Res 26:449–460. https://doi.org/10.1007/BF02992700

    Article  PubMed  Google Scholar 

  52. Kandror KV (1999) Insulin regulation of protein traffic in rat adipose cells. J Biol Chem 274:25210–25217

    Article  CAS  Google Scholar 

  53. Yamamoto A, WADA O, ONO T (1987) Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. FEBS J 165:627–631. https://doi.org/10.1111/j.1432-1033.1987.tb11486.x

    Article  CAS  Google Scholar 

  54. Davis CM, Vincent JB (1997) Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 36:4382–4395. https://doi.org/10.1021/bi963154t

    Article  CAS  PubMed  Google Scholar 

  55. Davis CM, Sumrall KH, Vincent JB (1996) A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP). Biochemistry 35:12963–12969. https://doi.org/10.1021/bi960328y

    Article  CAS  PubMed  Google Scholar 

  56. Evans GW, Bowman TD (1992) Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem 46:243–250. https://doi.org/10.1016/0162-0134(92)80034-S

    Article  CAS  PubMed  Google Scholar 

  57. Kroliczewska B, Zawadzki W, Dobrzanski Z, Kaczmarek-Oliwa A (2004) Changes in selected serum parameters of broiler chicken fed supplemental chromium. J Anim Physiol Anim Nutr 11:393–400. https://doi.org/10.1111/j.1439-0396.2004.00496.x

    Article  Google Scholar 

  58. Sano H, Nakai M, Kondo T, Terashima Y (1991) Insulin responsiveness to glucose and tissue responsiveness to insulin in lactating, pregnant, and nonpregnant, nonlactating beef cows. J Anim Sci 69:1122–1127. https://doi.org/10.2527/1991.6931122x

    Article  CAS  PubMed  Google Scholar 

  59. Yuan K, Vargas-Rodriguez CF, Mamedova LK, Muckey MB, Vaughn MA, Burnett DD, Gonzalez JM, Titgemeyer EC, Griswold KE, Bradford BJ (2014) Effects of supplemental chromium propionate and rumen-protected amino acids on nutrient metabolism, neutrophil activation, and adipocyte size in dairy cows during peak lactation. J Dairy Sci 97:3822–3831. https://doi.org/10.3168/jds.2013-7770

    Article  CAS  PubMed  Google Scholar 

  60. Yasui T, McArt JA, Ryan CM, Gilbert RO, Nydam DV, Valdez F, Griswold KE, Overton TR (2014) Effects of chromium propionate supplementation during the periparturient period and early lactation on metabolism, performance, and cytological endometritis in dairy cows. J Dairy Sci 97:6400–6410. https://doi.org/10.3168/jds.2013-7796

    Article  CAS  PubMed  Google Scholar 

  61. Yang WZ, Mowat DN, Subiyatno A, Liptrap RM (1996) Effects of chromium supplementation on early lactation performance of Holstein cows. Can J Anim Sci 76:221–230. https://doi.org/10.4141/cjas96-034

    Article  CAS  Google Scholar 

  62. Smith KL, Waldron MR, Drackley JK, Socha MT, Overton TR (2005) Performance of dairy cows as affected by prepartum dietary carbohydrate source and supplementation with chromium throughout the transition period. J Dairy Sci 88:255–263. https://doi.org/10.3168/jds.S0022-0302(05)72683-7

    Article  CAS  PubMed  Google Scholar 

  63. McNamara JP, Valdez F (2005) Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. J Dairy Sci 88:2498–2507. https://doi.org/10.3168/jds.S0022-0302(05)72927-1

    Article  CAS  PubMed  Google Scholar 

  64. NRC (2001) Nutrient requirements of dairy cattle, 7th edn. National Academy Press, Washington, DC

    Google Scholar 

  65. Peaker M (1975) Recent advances in the study of monovalent ion movements across the mammary epithelium: relation to onset of lactation. J Dairy Sci 58:1042–1047. https://doi.org/10.3168/jds.S0022-0302(75)84677-7

    Article  CAS  PubMed  Google Scholar 

  66. Xin Z, Waterman DF, Hemken RW, Harmon RJ (1993) Copper status and requirement during the dry period and early lactation in multiparous Holstein cows. J Dairy Sci 76:2711–2716. https://doi.org/10.3168/jds.S0022-0302(93)77607-9

    Article  CAS  PubMed  Google Scholar 

  67. Grummer RR (1993) Etiology of lipid-related metabolic disorders in periparturient dairy cows. J Dairy Sci 76:3882–3896. https://doi.org/10.3168/jds.S0022-0302(93)77729-2

    Article  CAS  PubMed  Google Scholar 

  68. Debras E, Grizard J, Aina E, Tesseraud S, Champredon C, Arnal M (1989) Insulin sensitivity and responsiveness during lactation and dry period in goats. Am J Physiol Endocrinol Metab 56:E295–E302. https://doi.org/10.1152/ajpendo.1989.256.2.E295

    Article  Google Scholar 

  69. Subiyatno A, Mowat DN, Yang WZ (1996) Metabolite and hormonal responses to glucose or propionate infusions in periparturient dairy cows supplemented with chromium. J Dairy Sci 79:1436–1445. https://doi.org/10.3168/jds.S0022-0302(96)76502-5

    Article  CAS  PubMed  Google Scholar 

  70. Holstenius P (1993) Hormonal regulation related to the development of fatty liver and ketosis. Act Vet Scand 89:55–60

    Google Scholar 

  71. Bohrer BM, Edenburn BM, Boler DD, Dilger AC, Felix TL (2014) Effect of feeding ractopamine hydrochloride (Optaflexx) with or without supplemental zinc and chromium propionate on growth performance, carcass characteristics, and meat quality of finishing steers. J Anim Sci 92:3988–3996. https://doi.org/10.2527/jas.2014-7824

    Article  CAS  PubMed  Google Scholar 

  72. Bernhard BC, Burdick NC, Rounds W, Rathmann RJ, Carroll JA, Finck DN, Jennings MA, Young TR, Johnson BJ (2012) Chromium supplementation alters the performance and health of feedlot cattle during the receiving period and enhances their metabolic response to a lipopolysaccharide challenge. J Anim Sci 90:3879–3888. https://doi.org/10.2527/jas.2011-4981

    Article  CAS  PubMed  Google Scholar 

  73. Bunting LD, Fernandez JM, Thompson DL, Southern LL (1994) Influence of chromium picolinate on glucose usage and metabolic criteria in growing Holstein calves. J Anim Sci 72:1591–1599 https://doi.org/0.2527/1994.7261591x

    Article  CAS  Google Scholar 

  74. Chang X, Mowat DN, Spiers GA (1992) Carcass characteristics and tissue-mineral contents of steers fed supplemental chromium. Can J Anim Sci 72:663–669. https://doi.org/10.4141/cjas92-077

    Article  CAS  Google Scholar 

  75. Mathison GW, Engstrom DF (1995) Chromium and protein supplements for growing-finishing beef steers fed barley-based diets. Can J Anim Sci 75:549–558. https://doi.org/10.4141/cjas95-083

    Article  CAS  Google Scholar 

  76. Kegley EB, Galloway DL, Fakler TM (2000) Effect of dietary chromium-l-methionine on glucose metabolism of beef steers. J Anim Sci 78:3177–3183 https://doi.org/0.2527/2000.78123177x

    Article  CAS  Google Scholar 

  77. Wright AJ, Mowat DN, Mallard BA (1994) Supplemental chromium and bovine respiratory disease vaccines for stressed feeder calves. Can J Anim Sci 74:287–295. https://doi.org/10.4141/cjas94-040

    Article  CAS  Google Scholar 

  78. Swanson KC, Harmon DL, Jacques KA, Larson BT, Richards CJ, Bohnert DW, Paton SJ (2000) Efficacy of chromium-yeast supplementation for growing beef steers. Anim Feed Sci Technol 86:95–105. https://doi.org/10.1016/S0377-8401(00)00142-5

    Article  CAS  Google Scholar 

  79. Pollard GV, Richardson CR, Karnezos TP (2002) Effects of supplemental organic chromium on growth, feed efficiency and carcass characteristics of feedlot steers. Anim Feed Sci Technol 98:121–128. https://doi.org/10.1016/S0377-8401(02)00010-X

    Article  CAS  Google Scholar 

  80. Kitchalong L, Fernandez JM, Bunting LD, Southern LL, Bidner TD (1995) Influence of chromium tripicolinate on glucose metabolism and nutrient partitioning in growing lambs. J Anim Sci 73:2694–3705. https://doi.org/10.2527/1995.7392694x

    Article  CAS  PubMed  Google Scholar 

  81. Forbes CD, Fernandez JM, Bunting LD, Southern LL, Thompson DL, Gentry LR, Chapa AM (1998) Growth and metabolic characteristics of Suffolk and Gulf Coast Native yearling ewes supplemented with chromium tripicolinate. Small Rumin Res 28:149–160. https://doi.org/10.1016/S0921-4488(97)00078-3

    Article  Google Scholar 

  82. Uyanik F (2001) The effects of dietary chromium supplementation on some blood parameters in sheep. Biol Trace Elem Res 84:93–101. https://doi.org/10.1385/BTER:84:1-3:093

    Article  CAS  PubMed  Google Scholar 

  83. Mostafa-Tehrani A, Ghorbani G, Zare-Shahneh A, Mirhadi SA (2006) Non-carcass components and wholesale cuts of Iranian fat-tailed lambs fed chromium nicotinate or chromium chloride. Small Rumin Res 63:12–19. https://doi.org/10.1016/j.smallrumres.2005.01.013

    Article  Google Scholar 

  84. Domínguez-Vara IA, González-Muñoz SS, Pinos-Rodríguez JM, Bórquez-Gastelum JL, Bárcena-Gama R, Mendoza-Martínez G, Zapata LE, Landois-Palencia LL (2009) Effects of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Anim Feed Sci Technol 152:42–49. https://doi.org/10.1016/j.anifeedsci.2009.03.008

    Article  CAS  Google Scholar 

  85. Sano H, Konno S, Shiga A (2000) Chromium supplementation does not influence glucose metabolism or insulin action in response to cold exposure in mature sheep. J Anim Sci 78:2950–2956. https://doi.org/10.2527/2000.78112950x

    Article  CAS  PubMed  Google Scholar 

  86. Haldar S, Mondal S, Samanta S, Ghosh TK (2009) Effects of dietary chromium supplementation on glucose tolerance and primary antibody response against peste des petits ruminants in dwarf Bengal goats (Capra hircus). Animal 3:209–217. https://doi.org/10.1017/S1751731108003418

    Article  CAS  PubMed  Google Scholar 

  87. Page TG, Southern LL, Ward TL, Thompson DL (1993) Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pigs. J Anim Sci 71:656–662. https://doi.org/10.2527/1993.713656x

    Article  CAS  PubMed  Google Scholar 

  88. Lloyd KE, Fellner V, McLeod SJ, Fry RS, Krafka K, Lamptey A, Spears JW (2010) Effects of supplementing dairy cows with chromium propionate on milk and tissue chromium concentrations. J Dairy Sci 93:4774–4780. https://doi.org/10.3168/jds.2010-3198

    Article  CAS  PubMed  Google Scholar 

  89. Zhou B, Wang H, Luo G, Niu R, Wang J (2013) Effect of dietary yeast chromium and l-carnitine on lipid metabolism of sheep. Biol Trace Elem Res 155:221–227. https://doi.org/10.1007/s12011-013-9790-9

    Article  CAS  PubMed  Google Scholar 

  90. Emami A, Ganjkhanlou M, Zali A (2015) Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids. Biol Trace Elem Res 164:50–57. https://doi.org/10.1007/s12011-014-0190-6

    Article  CAS  PubMed  Google Scholar 

  91. Sun Y, Ramirez J, Woski SA, Vincent JB (2000) The binding of chromium to low-molecular-weight chromium-binding substance (LMWCr) and the transfer of chromium from transfer and chromium picolinate to LMWCr. J Biol Inorg Chem 5:129–136. https://doi.org/10.1007/s007750050016

    Article  CAS  PubMed  Google Scholar 

  92. Zhang FJ, Weng XG, Wang JF, Zhou D, Zhang W, Zhai CC, Hou YX, Zhu YH (2014) Effects of temperature–humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows. J Anim Sci 92:3026–3034. https://doi.org/10.2527/jas.2013-6932

    Article  CAS  PubMed  Google Scholar 

  93. Spears JW, Whisnant CS, Huntington GB, Lloyd KE, Fry RS, Krafka K, Lamptey A, Hyda J (2012) Chromium propionate enhances insulin sensitivity in growing cattle. J Dairy Sci 95:2037–2045. https://doi.org/10.3168/jds.2011-4845

    Article  CAS  PubMed  Google Scholar 

  94. Depew CL, Bunting LD, Fernandez JM, Thompson DL, Adkinson RW (1998) Performance and metabolic responses of young dairy calves fed diets supplemented with chromium tripicolinate. J Dairy Sci 81:2916–2923. https://doi.org/10.3168/jds.S0022-0302(98)75853-9

    Article  CAS  PubMed  Google Scholar 

  95. Besong S, Jackson JA, Trammell DS, Akay V (2001) Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet. J Dairy Sci 84:1679–1685. https://doi.org/10.3168/jds.S0022-0302(01)74603-6

    Article  CAS  PubMed  Google Scholar 

  96. Ward TL, Southern LL, Bidner TD (1997) Interactive effects of dietary chromium tripicolinate and crude protein level in growing-finishing pigs provided inadequate and adequate pen space. J Anim Sci 75:1001–1008. https://doi.org/10.2527/1997.7541001x

    Article  CAS  PubMed  Google Scholar 

  97. Stahlhut HS, Whisnant CS, Lloyd KE, Baird EJ, Legleiter LR, Hansen SL, Spears JW (2006) Effect of chromium supplementation and copper status on glucose and lipid metabolism in Angus and Simmental beef cows. Anim Feed Sci Technol 128:253–265. https://doi.org/10.1016/j.anifeedsci.2005.11.002

    Article  CAS  Google Scholar 

  98. West JW, Mullinix BG, Bernard JK (2003) Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J Dairy Sci 86:232–242. https://doi.org/10.3168/jds.S0022-0302(03)73602-9

    Article  CAS  PubMed  Google Scholar 

  99. Silanikove N (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest Prod Sci 67:1–18. https://doi.org/10.1016/S0301-6226(00)00162-7

    Article  Google Scholar 

  100. Fuquay JW (1981) Heat stress as it affects animal production. J Anim Sci 52:164–174. https://doi.org/10.2527/jas1981.521164x

    Article  CAS  PubMed  Google Scholar 

  101. Armstrong DV (1994) Heat stress interaction with shade and cooling. J Dairy Sci 77:2044–2050. https://doi.org/10.3168/jds.S0022-0302(94)77149-6

    Article  CAS  PubMed  Google Scholar 

  102. Bernabucci U, Ronchi B, Lacetera N, Nardone A (2002) Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J Dairy Sci 85:2173–2179. https://doi.org/10.3168/jds.S0022-0302(02)74296-3

    Article  CAS  PubMed  Google Scholar 

  103. Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474:307–317. https://doi.org/10.1038/nature10209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HP, Issa PC, Cano M, Brandstätter H, Tsimikas S, Skerka C, Superti-Furga G (2011) Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 478:76–81. https://doi.org/10.1038/nature10449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aitken SL, Karcher EL, Rezamand P, Gandy JC, VandeHaar MJ, Capuco AV, Sordillo LM (2009) Evaluation of antioxidant and proinflammatory gene expression in bovine mammary tissue during the periparturient period. J Dairy Sci 92:589–598. https://doi.org/10.3168/jds.2008-1551

    Article  CAS  PubMed  Google Scholar 

  106. Gehrig SM, van der Poel C, Sayer TA, Schertzer JD, Henstridge DC, Church JE, Lamon S, Russell AP, Davies KE, Febbraio MA, Lynch GS (2012) Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 484:394–398. https://doi.org/10.1038/nature10980

    Article  CAS  PubMed  Google Scholar 

  107. Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164–5172. https://doi.org/10.1093/emboj/cdf528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5:25–44. https://doi.org/10.1210/edrv-5-1-25

    Article  CAS  PubMed  Google Scholar 

  109. Khansari DN, Murgo AJ, Faith RE (1990) Effects of stress on the immune system. Immunol Today 11:170–175. https://doi.org/10.1016/0167-5699(90)90069-L

    Article  CAS  PubMed  Google Scholar 

  110. Sordillo LM, Aitken SL (2009) Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol 128:104–109. https://doi.org/10.1016/j.vetimm.2008.10.305

    Article  CAS  PubMed  Google Scholar 

  111. Riekerink RO, Barkema HW, Stryhn H (2007) The effect of season on somatic cell count and the incidence of clinical mastitis. J Dairy Sci 90:1704–1715. https://doi.org/10.3168/jds.2006-567

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Lashkari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkari, S., Habibian, M. & Jensen, S.K. A Review on the Role of Chromium Supplementation in Ruminant Nutrition—Effects on Productive Performance, Blood Metabolites, Antioxidant Status, and Immunocompetence. Biol Trace Elem Res 186, 305–321 (2018). https://doi.org/10.1007/s12011-018-1310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1310-5

Keywords

Navigation