Skip to main content
Log in

Effects of Arsenic Trioxide on INF-gamma Gene Expression in MRL/lpr Mice and Human Lupus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic trioxide (As2O3; ATO), a traditional Chinese medicine, is used to treat patients with acute promye-locytic leukemia, while its application for treatment of systemic lupus erythematosus (SLE) is still under evaluation. The high expression of INF-gamma (INF-γ) is a primary pathogenic factor in SLE. It is found that ATO can reduce INF-γ expression levels in lupus-prone mice, whereas it is not clear whether ATO has the same effect on SLE patients. Therefore, this study was to investigate the underlying mechanism of the effects of ATO on the expression of INF-γ in splenocytes of MRL/lpr mice and PBMCs of human lupus. The mRNA and protein expression levels of INF-γ were assessed by real-time RT-PCR and ELISA, respectively. The histone acetylation status of the INF-γ promoter and the binding of RNA polymerase II (RNA Pol II) to the INF-γ promoter were detected using a chromatin immunoprecipitation (ChIP) technique. The mRNA and protein expression levels of INF-γ decreased in both splenocytes of MRL/lpr mice and PBMCs of SLE patients with ATO treatment, which were accompanied by reduced histone H4 and H3 acetylation in INF-γ promoter and decreased combination of RNA Pol II to the INF-γ promoter. Therefore, ATO may reduce the expression level of the INF-γ by altering the levels of INF-γ promoter acetylation and the combination of RNA Pol II to the INF-γ promoter in splenocytes of MRL/lpr mice and PBMCs of SLE patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D’Cruz DP, Khamashta MA, Hughes GR (2007) Systemic lupus erythematosus. Lancet 369(9561):587–596. https://doi.org/10.1016/S0140-6736(07)60279-7

    Article  PubMed  Google Scholar 

  2. Walvekar RR, Kane SV, Nadkarni MS, Bagwan IN, Chaukar DA, D’Cruz AK (2007) Chronic arsenic poisoning: a global health issue—a report of multiple primary cancers. J Cutan Pathol 34(2):203–206. https://doi.org/10.1111/j.1600-0560.2006.00596.x

    Article  CAS  PubMed  Google Scholar 

  3. Cui X, Li S, Shraim A, Kobayashi Y, Hayakawa T, Kanno S, Yamamoto M, Hirano S (2004) Subchronic exposure to arsenic through drinking water alters expression of cancer-related genes in rat liver. Toxicol Pathol 32(1):64–72. https://doi.org/10.1080/01926230490261348

    Article  CAS  PubMed  Google Scholar 

  4. Zhang TD, Chen GQ, Wang ZG, Wang ZY, Chen SJ, Chen Z (2001) Arsenic trioxide, a therapeutic agent for APL. Oncogene 20(49):7146–7153. https://doi.org/10.1038/sj.onc.1204762

    Article  CAS  PubMed  Google Scholar 

  5. Mannis G, Logan A, Leavitt A, Yanada M, Hwang J, Olin R, Damon L, Andreadis C, Ai W, Gaensler K (2015) Delayed hema-topoietic recovery after auto-SCT in patients receiving arsenic trioxide-based therapy for acute promyelocytic leukemia: a multi-center analysis. Bone Marrow Transplant 50(1):40–44. https://doi.org/10.1038/bmt.2014.201

    Article  CAS  PubMed  Google Scholar 

  6. Bobe P, Bonardelle D, Benihoud K, Opolon P, Chelbi-Alix MK (2006) Arsenic trioxide: a promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood 108(13):3967–3975. https://doi.org/10.1182/blood-2006-04-020610

    Article  CAS  PubMed  Google Scholar 

  7. Xia XR, Lin SX, Zhou Y (2007) Effects of arsenic trioxide on the autoimmunity and survival time in BXSB lupus mice. Zhongguo Zhong Xi Yi Jie He Za Zhi 27(2):138–141

    CAS  PubMed  Google Scholar 

  8. Amital H, Levi Y, Blank M, Barak V, Langevitz P, Afek A, Nicoletti F, Kopolovic J, Gilburd B, Meroni PL, Shoenfeld Y (1998) Immunomodulation of murine experimental SLE-like disease by interferon-gamma. Lupus 7(7):445–454. https://doi.org/10.1191/096120398678920406

    Article  CAS  PubMed  Google Scholar 

  9. Balomenos D, Rumold R, Theofilopoulos AN (1998) Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest 101(2):364–371. https://doi.org/10.1172/JCI750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pollard KM, Cauvi DM, Toomey CB, Morris KV, Kono DH (2013) Interferon-gamma and systemic autoimmunity. Discov Med 16(87):123–131

    PubMed  PubMed Central  Google Scholar 

  11. Hayashi T (2010) Therapeutic strategies for SLE involving cytokines: mechanism-oriented therapies especially IFN-gamma targeting gene therapy. J Biomed Biotechnol 2010:1–19. https://doi.org/10.1155/2010/461641

    Article  CAS  Google Scholar 

  12. Lawson BR, Prud'homme GJ, Chang Y, Gardner HA, Kuan J, Kono DH, Theofilopoulos AN (2000) Treatment of murine lupus with cDNA encoding IFN-gammaR/Fc. J Clin Invest 106(2):207–215. https://doi.org/10.1172/JCI10167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prud'homme GJ (2000) Gene therapy of autoimmune diseases with vectors encoding regulatory cytokines or inflammatory cytokine inhibitors. J Gene Med 2(4):222–232. https://doi.org/10.1002/1521-2254(200007/08)2:4<222::AID-JGM117>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  14. Seery JP (2000) IFN-gamma transgenic mice: clues to the pathogenesis of systemic lupus erythematosus? Arthritis Res 2(6):437–440. https://doi.org/10.1186/ar124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen PL, Eisenberg RA (1982) Anti-Sm autoantibodies in MRL mice: in vitro detection and generation of antibody-forming cells. J Immunol 129(6):2682–2685

    CAS  PubMed  Google Scholar 

  16. Hecht M, Muller M, Lohmann-Matthes ML, Emmendorffer A (1995) In vitro and in vivo effects of pentoxifylline on macrophages and lymphocytes derived from autoimmune MRL-lpr/lpr mice. J Leukoc Biol 57(2):242–249

    Article  CAS  PubMed  Google Scholar 

  17. Dai R, Zhang Y, Khan D, Heid B, Caudell D, Crasta O, Ahmed SA (2010) Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS One 5(12):e14302. https://doi.org/10.1371/journal.pone.0014302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kadonaga JT (2012) Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip Rev Dev Biol 1(1):40–51. https://doi.org/10.1002/wdev.21

    Article  CAS  PubMed  Google Scholar 

  19. Core LJ, Waterfall JJ, Gilchrist DA, Fargo DC, Kwak H, Adelman K, Lis JT (2012) Defining the status of RNA polymerase at promoters. Cell Rep 2(4):1025–1035. https://doi.org/10.1016/j.celrep.2012.08.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Billiau A (1996) Interferon-gamma: biology and role in pathogenesis. Adv Immunol 62:61–130. https://doi.org/10.1016/S0065-2776(08)60428-9

    Article  CAS  PubMed  Google Scholar 

  21. Bauer JW, Petri M, Batliwalla FM, Koeuth T, Wilson J, Slattery C, Panoskaltsis-Mortari A, Gregersen PK, Behrens TW, Baechler EC (2009) Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum 60(10):3098–3107. https://doi.org/10.1002/art.24803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bauer JW, Baechler EC, Petri M, Batliwalla FM, Crawford D, Ortmann WA, Espe KJ, Li W, Patel DD, Gregersen PK, Behrens TW (2006) Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med 3(12):e491. https://doi.org/10.1371/journal.pmed.0030491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haas C, Ryffel B, Le Hir M (1997) IFN-gamma is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J Immunol 158(11):5484–5491

    CAS  PubMed  Google Scholar 

  24. Zhou H, Li J, Jian Y, Chen T, Deng H, Zhang J, Zeng H, Shan Z, Chen W (2016) Effects and mechanism of arsenic trioxide in combination with rmhTRAIL in multiple myeloma. Exp Hematol 44(2):125–131 e111. https://doi.org/10.1016/j.exphem.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  25. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13(3):263–273. https://doi.org/10.1016/S0955-0674(00)00208-8

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Z, Song L, Maurer K, Petri MA, Sullivan KE (2010) Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun 11(2):124–133. https://doi.org/10.1038/gene.2009.66

    Article  CAS  PubMed  Google Scholar 

  27. He H, Lehming N (2003) Global effects of histone modifications. Brief Funct Genomic Proteomic 2(3):234–243. https://doi.org/10.1093/bfgp/2.3.234

    Article  CAS  PubMed  Google Scholar 

  28. Backs J, Olson EN (2006) Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98(1):15–24. https://doi.org/10.1161/01.RES.0000197782.21444.8f

    Article  CAS  PubMed  Google Scholar 

  29. Urnov FD, Wolffe AP (2001) Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 20(24):2991–3006. https://doi.org/10.1038/sj.onc.1204323

    Article  CAS  PubMed  Google Scholar 

  30. Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39(12):1507–1511. https://doi.org/10.1038/ng.2007.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39(12):1512–1516. https://doi.org/10.1038/ng.2007.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436(7052):876–880. https://doi.org/10.1038/nature03877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1):77–88. https://doi.org/10.1016/j.cell.2007.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alexiadis V, Ballestas ME, Sanchez C, Winokur S, Vedanarayanan V, Warren M, Ehrlich M (2007) RNAPol-ChIP analysis of transcription from FSHD-linked tandem repeats and satellite DNA. Biochim Biophys Acta 1769(1):29–40. https://doi.org/10.1016/j.bbaexp.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  35. Sandoval J, Rodriguez JL, Tur G, Serviddio G, Pereda J, Boukaba A, Sastre J, Torres L, Franco L, Lopez-Rodas G (2004) RNAPol-ChIP: a novel application of chromatin immunoprecipitation to the analysis of real-time gene transcription. Nucleic Acids Res 32(11):e88. https://doi.org/10.1093/nar/gnh091

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. https://doi.org/10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  37. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. https://doi.org/10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rando OJ (2012) Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 22(2):148–155. https://doi.org/10.1016/j.gde.2012.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Kang Yu (Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University) for providing assistance with experimental techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Zhu.

Ethics declarations

This study was carried out with approval of the Ethics Committee of First Affiliated Hospital, Wenzhou Medical University.

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Chen, E., Li, Y. et al. Effects of Arsenic Trioxide on INF-gamma Gene Expression in MRL/lpr Mice and Human Lupus. Biol Trace Elem Res 184, 391–397 (2018). https://doi.org/10.1007/s12011-017-1206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1206-9

Keywords

Navigation