Skip to main content
Log in

Highly Simple Deep Eutectic Solvent Extraction of Manganese in Vegetable Samples Prior to Its ICP-OES Analysis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present work, simple and sensitive extraction methods for selective determination of manganese have been successfully developed. The methods were based on solubilization of manganese in deep eutectic solvent medium. Three deep eutectic solvents with choline chloride (vitamin B4) and tartaric/oxalic/citric acids have been prepared. Extraction parameters were optimized with using standard reference material (1573a tomato leaves). The quantitative recovery values were obtained with 1.25 g/L sample to deep eutectic solvent (DES) volume, at 95 °C for 2 h. The limit of detection was found as 0.50, 0.34, and 1.23 μg/L for DES/tartaric, DES/oxalic, and DES/citric acid, respectively. At optimum conditions, the analytical signal was linear for the range of 10–3000 μg/L for all studied DESs with the correlation coefficient >0.99. The extraction methods were applied to different real samples such as basil herb, spinach, dill, and cucumber barks. The known amount of manganese was spiked to samples, and good recovery results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lemos VA, David GT (2010) An on-line cloud point extraction system for flame atomic absorption spectrometric determination of trace manganese in food samples. Microchem J 94:42–47. doi:10.1016/j.microc.2009.08.008

    Article  CAS  Google Scholar 

  2. Ghaedi M, Shokrollahi A, Mehrnoosh R et al (2008) Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of trace iron in environmental and biological samples. Cent Eur J Chem 6:488–496. doi:10.2478/s11532-008-0049-9

    CAS  Google Scholar 

  3. Lemos VA, Novaes CG, Bezerra MA (2009) An automated preconcentration system for the determination of manganese in food samples. J Food Compos Anal 22:337–342. doi:10.1016/j.jfca.2008.11.019

    Article  CAS  Google Scholar 

  4. Khajeh M, Sanchooli E (2010) Optimization of preconcentration procedure using magnetic nanoparticles for the determination of manganese in cereal samples. J Food Compos Anal 23:677–680. doi:10.1016/j.jfca.2010.03.013

    Article  CAS  Google Scholar 

  5. Amin NU, Hussain A, Alamzeb S, Begum S (2013) Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chem 136:1515–1523. doi:10.1016/j.foodchem.2012.09.058

    Article  PubMed  Google Scholar 

  6. Gebrekidan A, Weldegebriel Y, Hadera A, Van der Bruggen B (2013) Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicol Environ Saf 95:171–178. doi:10.1016/j.ecoenv.2013.05.035

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Hu W, Huang B et al (2013) Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China. Ecotoxicol Environ Saf 98:324–330. doi:10.1016/j.ecoenv.2013.09.037

    Article  CAS  PubMed  Google Scholar 

  8. Huang Z, Pan XD, Wu PG et al (2014) Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control 36:248–252. doi:10.1016/j.foodcont.2013.08.036

    Article  CAS  Google Scholar 

  9. Hu W, Huang B, Shi X et al (2013) Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicol Environ Saf 98:303–309. doi:10.1016/j.ecoenv.2013.09.040

    Article  CAS  PubMed  Google Scholar 

  10. Li Q, Chen Y, Fu H et al (2012) Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. J Hazard Mater 227–228:148–154. doi:10.1016/j.jhazmat.2012.05.023

    Article  PubMed  Google Scholar 

  11. Akinyele IO, Shokunbi OS (2015) Comparative analysis of dry ashing and wet digestion methods for the determination of trace and heavy metals in food samples. Food Chem 173:682–684. doi:10.1016/j.foodchem.2014.10.097

    Article  CAS  PubMed  Google Scholar 

  12. Fallah AA, Saei-Dehkordi SS, Nematollahi A, Jafari T (2011) Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchem J 98:275–279. doi:10.1016/j.microc.2011.02.007

    Article  CAS  Google Scholar 

  13. Ghaedi M, Ahmadi F, Soylak M (2007) Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples. J Hazard Mater 147:226–231. doi:10.1016/j.jhazmat.2006.12.070

    Article  CAS  PubMed  Google Scholar 

  14. Altundag H, Tuzen M (2011) Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES. Food Chem Toxicol 49:2800–2807. doi:10.1016/j.fct.2011.07.064

    Article  CAS  PubMed  Google Scholar 

  15. Bressy FC, Brito GB, Barbosa IS et al (2013) Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion. Microchem J 109:145–149. doi:10.1016/j.microc.2012.03.010

    Article  CAS  Google Scholar 

  16. Zhao Q, Wang Y, Cao Y et al (2014) Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China. Sci Total Environ 470–471:340–347. doi:10.1016/j.scitotenv.2013.09.086

    Article  PubMed  Google Scholar 

  17. Cui Q, Peng X, Yao X-H et al (2015) Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep Purif Technol 150:63–72. doi:10.1016/j.seppur.2015.06.026

    Article  CAS  Google Scholar 

  18. Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun (Camb):70–71. doi:10.1039/b210714g

  19. Li X, Row KH (2016) Development of deep eutectic solvents applied in extraction and separation. J Sep Sci. doi:10.1002/jssc.201600633

    Google Scholar 

  20. Yilmaz E, Soylak M (2015) Ultrasound assisted-deep eutectic solvent extraction of iron from sheep, bovine and chicken liver samples. Talanta 136:170–173. doi:10.1016/j.talanta.2014.12.034

    Article  CAS  PubMed  Google Scholar 

  21. Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567. doi:10.1016/j.cej.2015.03.091

    Article  CAS  Google Scholar 

  22. Tang B, Ho K (2013) Recent developments in deep eutectic solvents. Chemical Sciences:1427–1454. doi:10.1007/s00706-013-1050-3

  23. Lemos VA, Baliza PX, de Carvalho AL et al (2008) Development of a new sequential injection in-line cloud point extraction system for flame atomic absorption spectrometric determination of manganese in food samples. Talanta 77:388–393. doi:10.1016/j.talanta.2008.06.046

    Article  CAS  PubMed  Google Scholar 

  24. Youngvises N, Suwannasaroj K, Jakmunee J, AlSuhaimi A (2016) Multi-reverse flow injection analysis integrated with multi-optical sensor for simultaneous determination of Mn (II), Fe (II), Cu (II) and Fe (III) in natural waters. Talanta:1–6. doi:10.1016/j.talanta.2016.01.052

  25. Zeng C, Qin P, Lan L et al (2017) Chemical vapor generation coupled with atomic fluorescence spectrometry for the determination of manganese in food samples. Microchem J 131:31–35. doi:10.1016/j.microc.2016.11.010

    Article  CAS  Google Scholar 

  26. de Gois JS, Almeida TS, de Andrade RM et al (2016) Direct solid analysis for the determination of Mn, Ni, Rb and Sr in powdered stimulant plants using high-resolution continuum source atomic absorption spectrometry followed by chemometric classification based on elemental composition, polyphenol content a. Microchem J 124:283–289. doi:10.1016/j.microc.2015.08.020

    Article  Google Scholar 

  27. Ghoneim EM (2010) Simultaneous determination of Mn (II), Cu (II) and Fe (III) as 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complexes by adsorptive cathodic stripping voltammetry at a carbon paste electrode. Talanta 82:646–652. doi:10.1016/j.talanta.2010.05.025

    Article  CAS  PubMed  Google Scholar 

  28. Pourjavid MR, Arabieh M, Yousefi SR, Akbari Sehat A (2016) Interference free and fast determination of manganese (II), iron (III) and copper (II) ions in different real samples by flame atomic absorption spectroscopy after column graphene oxide-based solid phase extraction. Microchem J 129:259–267. doi:10.1016/j.microc.2016.07.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are fully grateful for the financial support of the Unit of the Scientific Research Projects of Cumhuriyet University, Cumhuriyet Cumhuriyet University Advanced Technology Research Center (CÜTAM), Unit of the Scientific Research Projects of Sakarya University, and Erciyes University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Bağda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bağda, E., Altundağ, H. & Soylak, M. Highly Simple Deep Eutectic Solvent Extraction of Manganese in Vegetable Samples Prior to Its ICP-OES Analysis. Biol Trace Elem Res 179, 334–339 (2017). https://doi.org/10.1007/s12011-017-0967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-0967-5

Keywords

Navigation