Skip to main content

Advertisement

Log in

Superoxide Dismutase Activity, Hydrogen Peroxide Steady-State Concentration, and Bactericidal and Phagocytic Activities Against Moraxella bovis, in Neutrophils Isolated from Copper-Deficient Bovines

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 02 September 2016

Abstract

Copper (Cu) deficiency increases occurrence of certain infectious diseases in animals, including infectious keratoconjunctivitis in bovines, a bacterial ocular inflammation caused by Moraxella bovis. Neutrophil leukocytes constitute the first phagocytic cells to arrive at infection sites for bacterial neutralization. The objective of this work was to evaluate whether the functionality of neutrophils against M. bovis is impaired in experimentally induced Cu deficiency in bovines using high molybdenum and sulfur levels in the diet. The Cu tissue values and the periocular achromotrichia observed in +Mo animals showed that the clinic phase of Cu deficiency was reached in this group. Instead, +Cu animals have not evidenced clinical signs or biochemical parameters of hypocuprosis. On the basis of our observations, we concluded that Cu deficiency has no effect on phagocytic and bactericidal activities of neutrophils against M. bovis. However, superoxide dismutase activity and peroxide hydrogen generation were significantly different between groups. Therefore, additional research to explain these results is merited to fully characterize the consequences of Cu status on the risk for infections under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5

Similar content being viewed by others

References

  1. Maggini S, Wintergest ES, Beveridge S, Hornig DH (2007) Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 98:29–35

    Article  Google Scholar 

  2. Minatel L, Carfagnini JC (2000) Copper deficiency and immune response in ruminants. Nutr Res 20:1519–1529

    Article  CAS  Google Scholar 

  3. Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 176:70–76

    Article  CAS  PubMed  Google Scholar 

  4. Wintergest ES, Maggini S, Hornig DH (2007) Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51(4):301–323

    Article  Google Scholar 

  5. Suttle NF (2010) Mineral nutrition of livestock, 4th edn. CABI Publishing, London, U.K.

    Book  Google Scholar 

  6. Blakley BR, Hamilton DL (1987) The effect of copper deficiency on the immune response in mice. Drug Nutr Interact 5(2):103–111

    CAS  PubMed  Google Scholar 

  7. Jones DG, Suttle NF (1983) The effect of copper deficiency on the resistance of mice to infection with Pasteurella Haemolytica. J Comp Pathol 93(1):143–149

    Article  CAS  PubMed  Google Scholar 

  8. Minatel L (2007) Efecto de la deficiencia de cobre sobre el desarrollo de queratoconjuntivitis infecciosa en terneros desafiados experimentalmente con Moraxella bovis. Universidad de Buenos Aires, Tesis Doctoral

    Google Scholar 

  9. Newberne PM, Hant CE, Young VR (1968) The role of diet and the reticuloendothelial system in the response of rats to Salmonella typhimurium infection. Br J Exp Pathol 49(5):448–457

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Scaletti RW, Trammell DS, Smith BA, Harmon RJ (2003) Role of dietary copper in enhancing resistance to Escherichia coli mastitis. J Dairy Sci 86(4):1240–1249

    Article  CAS  PubMed  Google Scholar 

  11. Postma GC, Carfagnini JC, Minatel L (2008) Moraxella bovis pathogenicity: an update. Comp Immunol Microbiol Infect Dis 31(6):449–458

    Article  PubMed  Google Scholar 

  12. Kumar V, Abbas A, Fausto N (2010) Robbins y Cotran: Patología estructural y funcional. Editorial Elsevier, España

    Google Scholar 

  13. Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock. CABI Publishing, U.K.

    Book  Google Scholar 

  14. Council NR (2000) Nutrient requirements of beef cattle. National Academic of Science-National Research Council, USA

    Google Scholar 

  15. Postma GC, Minatel L, Olivares RWI, Schapira A, Dallorso ME, Carfagnini JC (2013) Bactericidal activity of lachrymal secretion and complement system in copper deficient bovines. Biol Trace Elem Res 153(1–3):178–183

    Article  CAS  PubMed  Google Scholar 

  16. Engle TE, Spears JW (2000) Effects of dietary copper concentration and source on performance and copper status of growing and finishing steers. J Anim Sci 78:2446–2451

    Article  CAS  PubMed  Google Scholar 

  17. Carlson GP, Kaneko JJ (1973) Isolation of leucocytes from bovine peripheral blood. Proc Soc Exp Biol Med 142(3):853–860

    Article  CAS  PubMed  Google Scholar 

  18. Jain NC, Jasper DE (1967) Viable cells in bovine milk. Br Vet J 123:57–63

    Google Scholar 

  19. Xin Z, Waterman DF, Hemken RW, Harmon RJ (1991) Effects of copper status on neutrophil function, superoxide dismutase, and copper distribution in steers. J Dairy Sci 74(9):3078–3085

    Article  CAS  PubMed  Google Scholar 

  20. Gengelbach GP, Ward JD, Spears JW, Brown TT (1997) Effects of copper deficiency and copper deficiency coupled with high dietary iron or molybdenum on phagocytic cell function and response of calves to a respiratory disease challenge. J Anim Sci 75(4):1112–1118

    Article  CAS  PubMed  Google Scholar 

  21. Jones DG, Suttle NF (1981) Some effects of copper deficiency on leucocyte function in sheep and cattle. Res Vet Sci 31(2):151–156

    CAS  PubMed  Google Scholar 

  22. Boveris A, Alvarez S, Bustamante J, Valdez L (2002) Measurement of superoxide radical and hydrogen peroxide production in isolated cells and subcellular organelles. In: In: Methods in Enzymology. Volume 349. Lester Packer edition. Academic Press, USA

    Google Scholar 

  23. Valdez LB, Boveris A (2001) Nitric oxide and superoxide radical production by human mononuclear leukocytes. Antiox Redox Signal 3(3):505–513

    Article  CAS  Google Scholar 

  24. Jubb KV, Kennedy PC, Palmer N (2007) Pathology of domestic animals. Volume I. M. Grant Maxie, USA

    Google Scholar 

  25. Boyne R, Arthur JR (1981) Effects of selenium and copper deficiency on neutrophil function in cattle. J Comp Pathol 91(2):271–276

    Article  CAS  PubMed  Google Scholar 

  26. Stabel JR, Spears JW, Brown TT (1993) Effect of copper deficiency on tissue, blood characteristics, and immune function of calves challenged with infectious bovine rhinotracheitis virus and Pasteurella hemolytica. J Anim Sci 71(5):1247–1255

    CAS  PubMed  Google Scholar 

  27. Torre PM, Harmon RJ, Hemken RW, Clark TW, Trammell DS, Smith BA (1996) Mild dietary copper insufficiency depresses blood neutrophil function in dairy cattle. J Nutr Immunol 4(3):3–24

    CAS  Google Scholar 

  28. Babu U, Failla ML (1990a) Copper status and function of neutrophils are reversibly depressed in marginally and severely copper-deficient rats. J Nutr 120(12):1700–1709

    CAS  PubMed  Google Scholar 

  29. Boyne R, Arthur JR (1986) Effects of molybdenum or iron induced copper deficiency on the viability and function of neutrophils from cattle. Res Vet Sci 41(3):417–419

    CAS  PubMed  Google Scholar 

  30. Arthington JD, Corah LR, Blecha F (1995) Effect of copper depletion and repletion on lymphocyte blastogenesis and neutrophil bactericidal function in beef heifers. J Anim Sci 73(7):2079–2085

    Article  CAS  PubMed  Google Scholar 

  31. Cerone SI, Sansinanea AS, Streitenberger SA, Garcia MC, Auza NJ (1998) The effect of copper deficiency on the peripheral blood cells of cattle. Vet Res Comm 22(1):47–57

    Article  CAS  Google Scholar 

  32. Cerone SI, Sansinanea AS, Streitenberger SA, Garcia MC, Auza NJ (2000b) Cytochrome c oxidase, Cu, Zn-superoxide dismutase, and ceruloplasmin activities in copper-deficient bovines. Biol Trace Elem Res 73(3):269–278

    Article  CAS  PubMed  Google Scholar 

  33. Cerone SI, Sansinanea AS, Streitenberger SA, Garcia MC, Auza NJ (2000a) Bovine monocyte-derived macrophage function in induced copper deficiency. Gen Physiol Biophys 19(1):49–58

    CAS  PubMed  Google Scholar 

  34. Kagonyera GM, George LW, Miller M (1989) Effects of Moraxella bovis and culture filtrates on 51Cr-labeled bovine neutrophils. Am J Vet Res 50(1):18–21

    CAS  PubMed  Google Scholar 

  35. Kagonyera GM, George LW, Munn R (1989) Cytopathic effects of Moraxella bovis on cultured bovine neutrophils and corneal epithelial cells. Am J Vet Res 50(1):10–17

    CAS  PubMed  Google Scholar 

  36. Czuprynski CJ, Noel EJ (1990) Influence of Pasteurella haemolytica A1 crude leucotoxin on bovine neutrophil chemiluminescence. Infect Immunol 58(5):1485–1487

    CAS  Google Scholar 

  37. Chang YF, Renshaw HW (1986) Pasteurella haemolytica leucotoxin: comparison of 51chromium-release, trypan blue dye exclusion, and luminol-dependent chemiluminescence-inhibition assays for sensitivity in detecting leucotoxin activity. Am J Vet Res 47(1):134–138

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

Ethics Approval

All procedures received prior review and approval by the Institutional Experimental Animal Care and Use Committee of Buenos Aires University, Faculty of Veterinary Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Postma Gabriela Cintia.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12011-016-0812-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cintia, P.G., Leonardo, M., Israel, O.R.W. et al. Superoxide Dismutase Activity, Hydrogen Peroxide Steady-State Concentration, and Bactericidal and Phagocytic Activities Against Moraxella bovis, in Neutrophils Isolated from Copper-Deficient Bovines. Biol Trace Elem Res 171, 94–100 (2016). https://doi.org/10.1007/s12011-015-0505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0505-2

Keywords

Navigation