Skip to main content

Advertisement

Log in

Rac1 and Cdc42 Play Important Roles in Arsenic Neurotoxicity in Primary Cultured Rat Cerebellar Astrocytes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to explore whether Rac1 and Cdc42, representative members of Ras homologue guanosine triphosphatases (Rho GTPases), are involved in neurotoxicity induced by arsenic exposure in rat nervous system. Expressions of Rac1 and Cdc42 in rat cerebellum and cerebrum exposed to different doses of NaAsO2 (Wistar rats drank 0, 2, 10, and 50 mg/L NaAsO2 water for 3 months) were examined. Both Rac1 and Cdc42 expressions increased significantly in a dose-dependent manner in cerebellum (P < 0.01) by Western blot and immunohistochemistry assay, but in cerebrum, Rac1 and Cdc42 expressions only in 2 mg/L exposure groups were significantly higher than those in control groups (P < 0.01). Five to 50 μM NaAsO2 decreased cell viability in a dose-dependent manner in primary cultured rat astrocytes, whereas 1 μM NaAsO2 increased the cell viability in these cells. Rac1 inhibitor, NSC23766, decreased NaAsO2-induced apoptosis and increased the cell viability in primary cultured rat cerebellar astrocytes exposed to 30 μM NaAsO2. Cdc42 inhibitor, ZCL278, increased cell viability in the cells exposed to 30 μM NaAsO2. Taken together, our current studies in vivo and in vitro indicate that activations of Rac1 and Cdc42 play a very important role in arsenic neurotoxicity in rat cerebellum, providing a new insight into arsenic neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu CW, Liao VH (2014) Arsenite induces neurotoxic effects on AFD neurons via oxidative stress in Caenorhabditis elegans. Metallomics 6(10):1824–1831. doi:10.1039/c4mt00160e

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Graziano JH, Ahsan H (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 239(2):184–192. doi:10.1016/j.taap.2009.01.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Srivastava P, Yadav RS, Chandravanshi LP, Shukla RK, Dhuriya YK, Chauhan LK, Dwivedi HN, Pant AB, Khanna VK (2014) Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol Appl Pharmacol 279(3):428–440. doi:10.1016/j.taap.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  4. Zhang C, Li S, Sun Y, Dong W, Piao F, Piao Y, Liu S, Guan H, Yu S (2014) Arsenic downregulates gene expression at the postsynaptic density in mouse cerebellum, including genes responsible for long-term potentiation and depression. Toxicol Lett 228(3):260–269. doi:10.1016/j.toxlet.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  5. Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC, Chen KL, Hung DZ, Chen YW (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 224(1):130–140. doi:10.1016/j.toxlet.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  6. Bhattacharya S, Haldar PK (2013) Trichosanthes dioica fruit extract ameliorates arsenic-induced brain toxicity in male albino rats. J Environ Pathol Toxicol Oncol 32(2):141–148

    Article  PubMed  Google Scholar 

  7. Wang F, Liu S, Xi S, Yan L, Wang H, Song Y, Sun G (2013) Arsenic induces the expressions of angiogenesis-related factors through PI3K and MAPK pathways in SV-HUC-1 human uroepithelial cells. Toxicol Lett 222(3):303–311. doi:10.1016/j.toxlet.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  8. Rahman A, Vahter M, Smith AH, Nermell B, Yunus M, El Arifeen S, Persson LA, Ekström EC (2009) Arsenic exposure during pregnancy and size at birth: a prospective cohort study in Bangladesh. Am J Epidemiol 169(3):304–312. doi:10.1093/aje/kwn332

    Article  PubMed  Google Scholar 

  9. Catanzaro I, Schiera G, Sciandrello G, Barbata G, Caradonna F, Proia P, Di Liegro I (2010) Biological effects of inorganic arsenic on primary cultures of rat astrocytes. Int J Mol Med 26(4):457–462

    CAS  PubMed  Google Scholar 

  10. Zhao F, Liao Y, Jin Y, Li G, Lv X, Sun G (2012) Effects of arsenite on glutamate metabolism in primary cultured astrocytes. Toxicol in Vitro 26(1):24–31. doi:10.1016/j.tiv.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  11. Castro-Coronel Y, Del Razo LM, Huerta M, Hernandez-Lopez A, Ortega A, López-Bayghen E (2011) Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells. Toxicol Sci 122(2):539–550. doi:10.1093/toxsci/kfr126

    Article  CAS  PubMed  Google Scholar 

  12. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 118(2):586–601. doi:10.1093/toxsci/kfq266

    Article  CAS  PubMed  Google Scholar 

  13. Navas-Acién A, Pollán M, Gustavsson P, Plato N (2002) Occupation, exposure to chemicals and risk of gliomas and meningiomas in Sweden. Am J Ind Med 42(3):214–217

    Article  PubMed  Google Scholar 

  14. Leve F, Morgado-Díaz JA (2012) Rho GTPase signaling in the development of colorectal cancer. J Cell Biochem 113(8):2549–2559. doi:10.1002/jcb.24153

    Article  CAS  PubMed  Google Scholar 

  15. Modolo F, Biz MT, de Sousa SM, Fachinelli Rde L, Crema VO (2012) Immunohistochemical expression of Rho GTPases in ameloblastomas. J Oral Pathol Med 41(5):400–407. doi:10.1111/j.1600-0714.2011.01108.x

    Article  PubMed  Google Scholar 

  16. Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314. doi:10.3389/fncel.2014.00314

    Article  PubMed Central  PubMed  Google Scholar 

  17. Saoudi A, Kassem S, Dejean A, Gaud G (2014) Rho-GTPases as key regulators of T lymphocyte biology. Small GTPases 5. doi: 10.4161/sgtp.28208

  18. Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioassays 29(4):356–370

    Article  CAS  Google Scholar 

  19. Ullah I, Lee HY, Kim MJ, Shah SA, Badshah H, Kim TH, Chung HJ, Yang BC, Kim MO (2013) Rho GTPase activating protein 15 (arhGAP15) siRNA effect apoptosis-induced by ethanol in bovine fibroblast cells. Pak J Pharm Sci 26(3):605–610

    CAS  PubMed  Google Scholar 

  20. Yih LH, Wu YC, Hsu NC, Kuo HH (2012) Arsenic trioxide induces abnormal mitotic spindles through a PIP4KIIγ/Rho pathway. Toxicol Sci 128(1):115–125. doi:10.1093/toxsci/kfs129

    Article  CAS  PubMed  Google Scholar 

  21. Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L (1998) PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1(2):183–192

    Article  CAS  PubMed  Google Scholar 

  22. Gao J, Huang T, Zhou LJ, Ge YL, Lin SY, Dai Y (2014) Preconditioning effects of physiological cyclic stretch on pathologically mechanical stretch-induced alveolar epithelial cell apoptosis and barrier dysfunction. Biochem Biophys Res Commun 448(3):342–348. doi:10.1016/j.bbrc.2014.03.063

    Article  CAS  PubMed  Google Scholar 

  23. Fromm C, Coso OA, Montaner S, Xu N, Gutkind JS (1997) The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc Natl Acad Sci U S A 94(19):10098–10103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kamai T, Yamanishi T, Shirataki H, Takagi K, Asami H, Ito Y, Yoshida K (2004) Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res 10(14):4799–4805

    Article  CAS  PubMed  Google Scholar 

  25. Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B (2002) Rho GTPases in human breast tumors: expression and mutation analyses and correlation with clinical parameters. Br J Cancer 87(6):635–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cuiyan Z, Jie H, Fang Z, Kezhi Z, Junting W, Susheng S, Xiaoli F, Ning L, Xinhua M, Zhaoli C, Kang S, Bin Q, Baozhong L, Sheng C, Meihua X, Jie H (2007) Overexpression of RhoE in non-small Cell Lung Cancer (NSCLC) is associated with smoking and correlates with DNA copy number changes. Cancer Biol Ther 6(3):335–342

    Article  PubMed  Google Scholar 

  27. Wilson KF, Erickson JW, Antonyak MA, Cerione RA (2013) Rho GTPases and their roles in cancer metabolism. Trends Mol Med 19(2):74–82. doi:10.1016/j.molmed.2012.10.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19(11):1518–1520

    Article  CAS  PubMed  Google Scholar 

  29. Tolins M, Ruchirawat M, Landrigan P (2014) The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health 80(4):303–314. doi:10.1016/j.aogh.2014.09.005

    Article  PubMed  Google Scholar 

  30. Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52(9):1353–1359

    Article  CAS  PubMed  Google Scholar 

  31. Letašiová S, Medve'ová A, Šovčíková A, Dušinská M, Volkovová K, Mosoiu C, Bartonová A (2012) Bladder cancer, a review of the environmental risk factors. Environ Health 11(Suppl 1):S11. doi:10.1186/1476-069X-11-S1-S11

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wu J, Ji Z, Liu H, Liu Y, Han D, Shi C, Shi C, Wang C, Yang G, Chen X, Shen C, Li H, Bi Y, Zhang D, Zhao S (2013) Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicol Lett 220(1):61–69. doi:10.1016/j.toxlet.2013.03.019

    Article  CAS  PubMed  Google Scholar 

  33. Yen CC, Ho TJ, Wu CC, Chang CF, Su CC, Chen YW, Jinn TR, Lu TH, Cheng PW, Su YC, Liu SH, Huang CF (2011) Inorganic arsenic causes cell apoptosis in mouse cerebrum through an oxidative stress-regulated signaling pathway. Arch Toxicol 85(6):565–575. doi:10.1007/s00204-011-0709-y

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Gao Y, Yao H, Zhou L, Pei J, Sun L, Wang J, Sun D (2014) p38 and extracellular signal-regulated kinases activations have opposite effects on primary-cultured rat cerebellar granule neurons exposed to sodium arsenite. J Biochem Mol Toxicol 28(4):143–148. doi:10.1002/jbt.21546

    Article  CAS  PubMed  Google Scholar 

  35. Duan Q, Komissarova E, Dai W (2009) Arsenic trioxide suppresses paclitaxel-induced mitotic arrest. Cell Prolif 42(3):404–411. doi:10.1111/j.1365-2184.2009.00606.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174(2):130–138

    Article  CAS  PubMed  Google Scholar 

  37. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mathas S, Lietz A, Janz M, Hinz M, Jundt F, Scheidereit C, Bommert K, Dorken B (2003) Inhibition of NF-kappaB essentially contributes to arsenic-induced apoptosis. Blood 102(3):1028–1034

    Article  CAS  PubMed  Google Scholar 

  39. Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92(1):57–70

    Article  CAS  PubMed  Google Scholar 

  40. Haga N, Fujita N, Tsuruo T (2005) Involvement of mitochondrial aggregation in arsenic trioxide (As2O3)-induced apoptosis in human glioblastoma cells. Cancer Sci 96(11):825–833

    Article  CAS  PubMed  Google Scholar 

  41. Jacquier A, Buhler E, Schäfer MK, Bohl D, Blanchard S, Beclin C, Haase G (2006) Alsin/Rac1 signaling controls survival and growth of spinal motoneurons. Ann Neurol 60(1):105–117

    Article  CAS  PubMed  Google Scholar 

  42. Johanna GV, Fredy CA, David VC, Natalia MV, Angel CR, Patricia CG (2010) Rac1 activity changes are associated with neuronal pathology and spatial memory long-term recovery after global cerebral ischemia. Neurochem Int 57(7):762–773. doi:10.1016/j.neuint.2010.08.014

    Article  PubMed  Google Scholar 

  43. Shirokawa JM, Elisei R, Knauf JA, Hara T, Wang J, Saavedra HI, Fagin JA (2000) Conditional apoptosis induced by oncogenic ras inthyroid cells. Mol Endocrinol 14(11):1725–1738

    Article  CAS  PubMed  Google Scholar 

  44. Negishi T, Matsunaga Y, Kobayashi Y, Hirano S, Tashiro T (2013) Developmental subchronic exposure to diphenylarsinic acid induced increased exploratory behavior, impaired learning behavior, and decreased cerebellar glutathione concentration in rats. Toxicol Sci 136(2):478–486. doi:10.1093/toxsci/kft200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Liu X, Gao Y, Yao H, Zhou L, Sun D, Wang J (2013) Neuroglobin involvement in the course of arsenic toxicity in rat cerebellar granule neurons. Biol Trace Elem Res 155(3):439–446. doi:10.1007/s12011-013-9810-9

    Article  CAS  PubMed  Google Scholar 

  46. Catanzaro I, Schiera G, Sciandrello G, Barbata G, Caradonna F, Proia P, Di Liegro I (2010) Biological effects of inorganic arsenic on primary cultures of rat astrocytes. Int J Mol Med 26(4):457–462

    CAS  PubMed  Google Scholar 

  47. Castro-Coronel Y, Del Razo LM, Huerta M, Hernandez-Lopez A, Ortega A, López-Bayghen E (2011) Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial Cells. Toxicol Sci 122(2):539–550. doi:10.1093/toxsci/kfr126

    Article  CAS  PubMed  Google Scholar 

  48. Liu L, You Q, Tu Y, Li Q, Zheng L, Li X, Gu J, Wang G (2015) Midazolam inhibits the apoptosis of astrocytes induced by oxygen glucose deprivation via targeting JAK2-STAT3 signaling pathway. Cell Physiol Biochem 35(1):126–136. doi:10.1159/000369681

    Article  PubMed  Google Scholar 

  49. Le SS, Loucks FA, Udo H, Richardson-Burns S, Phelps RA, Bouchard RJ, Barth H, Aktories K, Tyler KL, Kandel ER, Heidenreich KA, Linseman DA (2005) Inhibition of Rac GTPase triggers a c-Jun- and Bim-dependent mitochondrial apoptotic cascade in cerebellar granule neurons. J Neurochem 94(4):1025–1039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Linseman DA, Laessig T, Meintzer MK, McClure M, Barth H, Aktories K, Heidenreich KA (2001) An essential role for Rac/Cdc42 GTPases in cerebellar granule neuron survival. J Biol Chem 276(42):39123–39131

    Article  CAS  PubMed  Google Scholar 

  51. Fujimura M, Usuki F, Sawada M, Rostene W, Godefroy D, Takashima A (2009) Methylmercury exposure downregulates the expression of Racl and leads to neuritic degeneration and ultimately apoptosis in cerebrocortical neurons. Neurotoxicology 30(1):16–22. doi:10.1016/j.neuro.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  52. Tyler CR, Allan AM (2013) Adult hippocampal neurogenesis and mRNA expressionare altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. Plos One 8(9):e73720. doi:10.1371/journal.pone.0073720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81102082).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Liu, T., Liu, X. et al. Rac1 and Cdc42 Play Important Roles in Arsenic Neurotoxicity in Primary Cultured Rat Cerebellar Astrocytes. Biol Trace Elem Res 170, 173–182 (2016). https://doi.org/10.1007/s12011-015-0456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0456-7

Keywords

Navigation