Skip to main content

Advertisement

Log in

Role of Exogenous Melatonin on Cell Proliferation and Oxidant/Antioxidant System in Aluminum-Induced Renal Toxicity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aluminum has toxic potential on humans and animals when it accumulates in various tissues. It was shown in a number of studies that aluminum causes oxidative stress by free radical formation and lipid peroxidation in tissues and thus may cause damage in target organs. Although there are numerous studies investigating aluminum toxicity, biochemical mechanisms of the damage caused by aluminum have yet to be explained. Melatonin produced by pineal gland was shown to be an effective antioxidant. Since kidneys are target organs for aluminum accumulation and toxicity, we have studied the role of melatonin against aluminum-induced renal toxicity in rats. Wistar albino rats were divided into five groups. Group I served as control, and received only physiological saline; group II served as positive control for melatonin, and received ethanol and physiological saline; group III received melatonin (10 mg/kg); group IV received aluminum sulfate (5 mg/kg) and group V received aluminum sulfate and melatonin (in the same dose), injected three times a week for 1 month. Administration of aluminum caused degenerative changes in renal tissues, such as increase in metallothionein immunoreactivity and decrease in cell proliferation. Moreover, uric acid and lipid peroxidation levels and xanthine oxidase activity increased, while glutathione, catalase, superoxide dismutase, paraoxonase 1, glucose-6-phosphate dehydrogenase, and sodium potassium ATPase activities decreased. Administration of melatonin mostly prevented these symptoms. Results showed that melatonin is a potential beneficial agent for reducing damage in aluminum-induced renal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AEC:

3-Amino-9-ethylcarbazole

Al:

Aluminum

Al2(SO4)3 :

Aluminum sulfate

AOS:

Antioxidant defense system

CAT:

Catalase

DETAE:

Experimental Medical Research Institute of Istanbul University

G6PD:

Glucose-6-phosphate dehydrogenase

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GST:

Glutathione-S-transferase

HMS:

Pentose phosphate pathway

Ki-67:

Nuclear antigen that detects cells in synthesis phase

LPO:

Lipid peroxidation

Mel:

Melatonin

MT:

Metallothionein

Na+/K+-ATPase:

Sodium/potassium ATPase

PBS:

Phosphate buffer

PC:

Protein carbonyl

PON1:

Paraoxonase 1

ROS:

Reactive oxygen species

SD:

Standard deviation

SE:

Standard error

SOD:

Superoxide dismutase

XO:

Xanthine oxidase

References

  1. Mahmoud ME, Elsoadaa SS (2013) Protective effect of ascorbic acid, biopropolis and royal jelly against aluminum toxicity in rats. J Nat Sci Res 3:102–111

    Google Scholar 

  2. Becaria AA, Campbell A, Bondy SC (2002) Aluminium as a toxicant. Toxicol Ind Health 18:309–320

    Article  CAS  PubMed  Google Scholar 

  3. Abdel Moneim AE, Othman MS, Mohmoud SM, El-Deib KM (2013) Pomegranate peel attenuates aluminum- induced hepatorenal toxicity. Toxicol Mech Methods 23(8):624–633

    Article  CAS  PubMed  Google Scholar 

  4. Gawish AM (2005) Histological study of the effect of zinc sulphate on the toxicity of aluminium sulphate in liver and kidney of male albino rats. Egypt J Hosp Med 19:189–197

    CAS  Google Scholar 

  5. Exley C (2004) The pro-oxidant activity of aluminium. Free Radic Biol Med 36:380–387

    Article  CAS  PubMed  Google Scholar 

  6. Zatta P, Kissb T, Suwalsky M, Berthon G (2002) Aluminium(III) as a promoter of cellular oxidation. Coord Chem Rev 228:271–284

    Article  CAS  Google Scholar 

  7. Ichikawa I, Kıyama S, Yoshioka T (1994) Renal antioxidant enzymes: Their regulation and function. Kidney Int 45:1–9

    Article  CAS  PubMed  Google Scholar 

  8. Farías JG, Zepeda AB, Calaf GM (2012) Melatonin protects the heart, lungs and kidneys from oxidative stress under intermittent hypobaric hypoxia in rats. Biol Res 45:81–85

    Article  PubMed  Google Scholar 

  9. Kumar D (2012) Role of non-enzymatic antioxidants in stimulation of metallothionein against metal toxicity. Int J Environ Sci 2:1596–1604

  10. Esparza JL, Gomez M, Romeu M, Mulero M, Sanchez DJ, Mallol J, Domingo JL (2003) Aluminium-induced pro-oxidant effects in rats:Protective role of exogenous melatonin. J Pineal Res 35:32–39

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez M, Medina A, Santos F, Carbajo E, Rodriguez J, Alvarez J, Cobo A (2001) Exacerbated inflammatory response induced by insulin-like growth factor-I treatment in rats with ischemic acute renal failure. J Am Soc Nephrol 12:1900–1907

    CAS  PubMed  Google Scholar 

  12. Barker SB (1944) The direct colorimetric determination of urea in blood and urine. J Biol Chem 152:453–463

    CAS  Google Scholar 

  13. Bonsnes RW, Taussky HH (1945) On the colorimetric determination of creatinine by the Jaffe reaction. J Biol Chem 158:581–591

    CAS  Google Scholar 

  14. Beutler E (1975) Glutathione in red cell metabolism. In: A Manual of Biochemical Methods. New York: Grune and Stratton pp.112-114

  15. Ledwozyw A, Michalak J, Stepien A, Kadziolka A (1986) The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 155:275–283

    Article  CAS  PubMed  Google Scholar 

  16. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  17. Mylorie AA, Collins H, Umbles C, Kyle J (1986) Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82:512–520

    Article  Google Scholar 

  18. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

  19. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  PubMed  Google Scholar 

  20. Habig WH, Jacoby WB (1981) Assays for differentiation of glutathione - S- transferases. Methods Enzymol 77:398–405

    Article  CAS  PubMed  Google Scholar 

  21. Furlong CE, Richter RJ, Seidel SJ (1988) Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon. Am J Hum Genet 43:230–238

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Corte ED, Stirpe F (1968) Regulation of xanthine oxidase in rat liver: Modifications of the enzyme activity of rat liver supernatant on storage at 20 degrees. Biochem J 108:349–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Beutler E (1984) Red cell metabolism: a manual of biochemical methods, 3rd edn. Grune and Stratton, New York, pp 74–76

    Google Scholar 

  24. Ridderstap AS, Bonting SL (1969) Na+-K+ activated ATPase and exocrine pancreatic secretion in vitro. Am J Physiol 217:1721–1727

    CAS  PubMed  Google Scholar 

  25. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  27. Balahoroglu R, Dulger H, Ozbek H, Bayram I, Sekeroglu MR (2008) Protective effects of antioxidants on the experimental liver and kidney toxicity in mice. Eur J Gen Med 5:157–164

    CAS  Google Scholar 

  28. Shilpi J, Satyam K, Sharma A, Budhiraja V, Rastogi R (2009) Aluminium induced microscopic changes in the kidney. People J Sci Res 2:1–4

    Google Scholar 

  29. Aguilar-Nascimento JE (2006) Evaluation of intestinal trophism: review of current methods and techniques. Curr Opin Clin Nutr Metab Care 9:257–262

    Article  PubMed  Google Scholar 

  30. Yumoto S, Nagai H, Matsuzaki H (2001) Aluminium incorporation into the brain of rat fetuses and sucklings. Brain Res Bull 55:229–234

    Article  CAS  PubMed  Google Scholar 

  31. Qi W, Reiter RJ, Tan DX, Manchester LC, Siu AW, García JJ (2000) Increased levels of oxidatively damaged DNA induced by chromium (III) and H2O2: protection by melatonin and related molecules. J Pineal Res 29:54–61

    Article  CAS  PubMed  Google Scholar 

  32. Hooper DC, Spitsin S, Kean RB, Champion JM, Dickson GM, Chaudhry I (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 95:675–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Garrec J, Monari A, Assfeld X, Mir LM, Tarek M (2014) Lipid peroxidation in membranes: the peroxyl radical does not float. J Phys Chem Lett 5:1653–1658

    Article  CAS  PubMed  Google Scholar 

  34. Haugen E, Nath KA (1999) The involvement of oxidative stress in the progression of renal injury. Blood Purif 17:58–65

    Article  CAS  PubMed  Google Scholar 

  35. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1998) Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett 423:57–60

    Article  CAS  PubMed  Google Scholar 

  36. Rosenblat M, Karry R, Aviram M (2006) Paraoxonase1 (PON1) is a more potent antioxidant and stimulant of macrophage cholesterol efflux, when present in HDL than in lipoprotein-deficient serum: relevance to diabetes. Atherosclerosis 187:74–81

    CAS  PubMed  Google Scholar 

  37. Greene EL, Paller MS (1992) Xanthine oxidase produces O2- in post hypoxic injury of renal epithelial cells. Am J Physiol 263:F251–F255

    CAS  PubMed  Google Scholar 

  38. Luzzatto L, Battistuzzi G (1984) Glucose-6-phosphate dehydrogenase. Adv Hum Genet 14:217–329

    Google Scholar 

  39. Uchida K, Stadtman ER (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci U S A 89:4544–4548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species. J Pineal Res 42:28–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Scientific Research Projects Coordination Unit of Istanbul University (Project No: 4729 and UDP -33257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omur Karabulut-Bulan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabulut-Bulan, O., Bayrak, B.B., Arda-Pirincci, P. et al. Role of Exogenous Melatonin on Cell Proliferation and Oxidant/Antioxidant System in Aluminum-Induced Renal Toxicity. Biol Trace Elem Res 168, 141–149 (2015). https://doi.org/10.1007/s12011-015-0320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0320-9

Keywords

Navigation