Skip to main content
Log in

Biocompatibility of Defect-Related Luminescent Nanostructured and Microstructured Hydroxyapatite

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Three defect-related luminescent hydroxyapatite (HAP) particles, S1, S2, and S3, with different morphologies (the samples S1 and S2 are nanorods with diameters of 25 nm and lengths of 30 and 100 nm, respectively; sample S3 is bur-like microspheres with diameters of 5–6 μm) were synthesized, and their biocompatibility was investigated by MTT, reactive oxygen species (ROS), interleukin-6 (IL-6), comet, and hemolysis assays. The results indicated that all samples were stable in cell culture medium and did not induce the synthesis of proinflammatory cytokine IL-6 or result in hemolysis. It was found that samples S1 and S3 inhibited osteoblast (OB) viability at concentrations of 5, 10, 20, 40, and 80 μg/mL for 24, 48, and 72 h. Sample S2 had no effect on the viability of OB at all tested concentrations for 24 and 48 h, but the viability of OB was increased at concentrations of 20, 40, and 80 μg/mL for 72 h. Samples S1 and S3 could increase the level of cellular ROS; sample S2 had no effect on the level of cellular ROS at a concentration of 20 μg/mL for 48 h. Although samples S1 and S3 induced significant DNA damage, sample S2 could not cause significant DNA damage at a concentration of 20 μg/mL for 72 h. The results suggest that longer nanorod HAP can show excellent biocompatibility and therefore may find potential applications in biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Budiraharjo R, Neoh KG, Kang ET (2012) Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation. J Colloid Interf Sci 366:224–232

    Article  CAS  Google Scholar 

  2. Qi C, Zhu YJ, Lu BQ et al (2013) Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chem Eur J 19:5332–5341

    Article  CAS  PubMed  Google Scholar 

  3. Ashokan A, Menon D, Nair S et al (2010) A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials 31:2606–2616

    Article  CAS  PubMed  Google Scholar 

  4. Li D, Liang Z, Chen J et al (2013) AIE luminogen bridged hollow hydroxyapatite nanocapsules for drug delivery. Dalton Trans 42:9877–9883

    Article  CAS  PubMed  Google Scholar 

  5. Chen F, Lam WM, Lin CJ et al (2007) Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface : in vitro evaluation using mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 82:183–191

    Article  CAS  PubMed  Google Scholar 

  6. Hu Q, Tan Z, Liu Y et al (2007) Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J Mater Chem 17:4690–4698

    Article  CAS  Google Scholar 

  7. Cai L, Guinn AS, Wang S (2011) Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Acta Biomater 7:2185–2199

    Article  CAS  PubMed  Google Scholar 

  8. Quan R, Yang D, Wu X et al (2008) In vitro and in vivo biocompatibility of graded hydroxyapatite–zirconia composite bioceramic. J Mater Sci Mater Med 19:183–187

    Article  CAS  PubMed  Google Scholar 

  9. Naziroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  10. Naziroglu M, Karaoğlu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    Article  CAS  PubMed  Google Scholar 

  11. Turkez H, Yousef MI, Sönmez E et al (2014) Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells. J Appl Toxicol 34:373–379

    Article  CAS  PubMed  Google Scholar 

  12. Sun JS, Liu HC, Chang WH et al (1998) Influence of hydroxyapatite particle size on bone cell activities: an in vitro study. J Biomed Mater Res 39:390–397

    Article  CAS  PubMed  Google Scholar 

  13. Xu Z, Liu C, Wei J et al (2012) Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J Appl Toxicol 32:429–435

    Article  CAS  PubMed  Google Scholar 

  14. Mandel S, Tas AC (2010) Brushite (CaHPO4 · 2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4 · 5H2O) transformation in DMEM solutions at 36.5 °C. Mater Sci Eng C 30:245–254

    Article  CAS  Google Scholar 

  15. Ducheyne P, Radin S, King L (1993) The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. dissolution. J Biomed Mater Res 27:25–34

    Article  CAS  PubMed  Google Scholar 

  16. Zhang C, Lin J (2012) Defect-related luminescent materials: synthesis, emission properties and applications. Chem Soc Rev 41:7938–7961

    Article  CAS  PubMed  Google Scholar 

  17. Zhang C, Yang J, Quan Z et al (2009) Hydroxyapatite nano- and microcrystals with multiform morphologies: controllable synthesis and luminescence properties. Cryst Growth Des 9:2725–2733

    Article  CAS  Google Scholar 

  18. Sashidhara KV, Kumar M, Khedgikar V et al (2013) Discovery of coumarin–dihydropyridine hybrids as bone anabolic agents. J Med Chem 56:109–122

    Article  CAS  PubMed  Google Scholar 

  19. Swarnkar G, Sharan K, Siddiqui JA et al (2012) A naturally occurring naringenin derivative exerts potent bone anabolic effects by mimicking oestrogen action on osteoblasts. Br J Pharmacol 165:1526–1542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Park EJ, Yi J, Chung KH et al (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229

    Article  CAS  PubMed  Google Scholar 

  21. Zhou C, Pan W, Wang XP et al (2012) Artesunate induces apoptosis via a Bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J Cell Physiol 227:3778–3786

    Article  CAS  PubMed  Google Scholar 

  22. Sousa C, Fernandes F, Valentão P et al (2012) Brassica oleracea L. var. costata DC and Pieris brassicae L. aqueous extracts reduce methyl methanesulfonate-induced DNA damage in V79 hamster lung fibroblasts. J Agric Food Chem 60:5380–5387

    Article  CAS  PubMed  Google Scholar 

  23. Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842

    Article  CAS  PubMed  Google Scholar 

  24. Hornez JC, Chai F, Blanchemain N et al (2007) Biocompatibility improvement of pure hydroxyapatite (HA) with different porosity. Key Eng Mater 330:927–930

    Article  Google Scholar 

  25. Khandhar AP, Ferguson RM, Krishnan KM (2011) Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: implications in biological systems. J Appl Phys 109:07B310

    Article  PubMed Central  Google Scholar 

  26. Tanimoto Y, Shibata Y, Kataoka Y et al (2008) Osteoblast-like cell proliferation on tape-cast and sintered tricalcium phosphate sheets. Acta Biomater 4:397–402

    Article  CAS  PubMed  Google Scholar 

  27. Shi Z, Huang X, Cai Y et al (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345

    Article  CAS  PubMed  Google Scholar 

  28. Hyun MS, Hur JM, Mun YJ et al (2010) BBR induces apoptosis in HepG2 cell through an Akt-ASK1-ROS-p38MAPKs-linked cascade. J Cell Biochem 109:329–338

    CAS  PubMed  Google Scholar 

  29. Ishimi Y, Miyaura C, Jin CH et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303

    CAS  PubMed  Google Scholar 

  30. Axmann R, Böhm C, Krönke G et al (2009) Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum 60:2747–2756

    Article  CAS  PubMed  Google Scholar 

  31. Steiner G, Tohidast-Akrad M, Witzmann G et al (1999) Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology 38:202–213

    Article  CAS  PubMed  Google Scholar 

  32. Stanic V, Janackovic D, Dimitrijevic S et al (2011) Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci 257:4510–4518

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundations of China (21001038, 31470961, 21301046 and 51302062), the Research Fund for the Doctoral Program of Higher Education of China (20111301110004, 20131301120004), Hebei Province “Hundred Talents Program” (BR2-202), the China Postdoctoral Science Foundation (2013 M530119), the Natural Science Foundation of Hebei Province (B2012201074), the Outstanding Youth Fund Project (Y2012007) of Hebei Education Department, Training Program for Innovative Research Team, China Postdoctoral Science Foundation (2014T70226) and Leading Talent in Hebei Province University (LJRC024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuimiao Zhang or Jinchao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Duan, J., Zhang, L. et al. Biocompatibility of Defect-Related Luminescent Nanostructured and Microstructured Hydroxyapatite. Biol Trace Elem Res 162, 158–167 (2014). https://doi.org/10.1007/s12011-014-0151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0151-0

Keywords

Navigation