Skip to main content

Advertisement

Log in

Transformation of Tributyltin in Zebrafish Eleutheroembryos (Danio rerio)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Organotin compounds are highly versatile group of organometallic chemicals used in industrial and agricultural applications. Their endocrine-disrupting effects are well known and their extensive uses as biocide materials, e.g., in antifouling paints, for many years have led to serious environmental problems. So far, attention has mainly been given to tributyltin pollution in water, sediments, and marine organisms because of its highly toxic effects and high accumulation levels at very low concentrations. In this study, we will focus on the conversion of tributyltin after it is absorbed by zebrafish eleutheroembryos, presented here as an alternative model to adult fish for describing bioconcentration. A simplified analytical extraction procedure based on the use of an assisted ultrasonic probe and derivatization by ethylation, followed by gas chromatography with a flame photometric detector (GC-FPD) is proposed. This classical methodology for organotin determination has been validated by inductively coupled plasma mass spectrometry (ICP-MS) and Zeeman graphite furnace atomic absorption spectrometry (ZGF-AAS) in terms of total tin content. The speciation analysis results show that zebrafish eleutheroembryos absorb high amounts of tributyltin and convert it into monobutyltin and likely in inorganic tin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tesfalidet S (2012) Determination of organometallic compounds using species specific isotope dilution and GC- ICP-MS. In: Mustafa Ali Mohd (ed) Advanced gas chromatography - progress in agricultural, biomedical and industrial applications, pp 389–404

  2. Xiao Q, Hu B, He M (2008) Speciation of butyltin compounds in environmental and biological samples using headspace single drop microextraction coupled with gas chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A 1211:135–141

    Article  CAS  PubMed  Google Scholar 

  3. Hoch M (2011) Organotin compounds in the environment, an overview. Appl Geochem 16:719–743

    Article  Google Scholar 

  4. Ambient aquatic life water quality criteria for tributyltin (TBT)-Final (2003) EPA 822-R-03-031

  5. AFS Convention, International Convention on the Control of Harmful Anti-fouling Systems on Ships (2001) International Maritime Organization

  6. Gipperth L (2009) The legal design of the international and European Union ban on tributyltin antifouling paint: direct and indirect effects. J Environ Manag 90:S86–S95

    Article  CAS  Google Scholar 

  7. Commission Directive 2002/62/EC

  8. Sonak S, Pangam S, Giriyan A, Hawaldar K (2009) Implications of the ban on organotins for protection of global coastal and marine ecology. J Environ Manag 90:S96–S108

    Article  Google Scholar 

  9. Okoro KO, Fatoki OS, Adekola FA, Ximba BJ, Snyman RG (2011) Sources, environmental levels and toxicity of organotin in marine environment: a review. Asian J Chem 23(2):473–482

    CAS  Google Scholar 

  10. Santos DM, Sant’Anna BS, Sandron DC, Souza SC, Cristale J, Marchi MR, Turra A (2010) Occurrence and behavior of butyltins in intertidal and shallow subtidal surface sediments of an estuarine beach under different sampling conditions. Estuar Coast Shelf Sci 88:322–328

    Article  Google Scholar 

  11. Toste R, Fernandez MA, Pessoa IA, Parahyba MA, Dore MP (2011) Organotin pollution at Arraial do Cabo, Rio de Janeiro State, Brazil: increasing levels after the TBT ban. Braz J Oceanogr 59(1):111–117

    Article  Google Scholar 

  12. Tessier E, Amouroux D, Morin A, Lehnhoff C, Thybaud E, Vindimian E, Donard OFX (2007) (Tri)butyltin biotic degradation rates and pathways in different compartments of a freshwater model ecosystem. Sci Total Environ 388:214–233

    Article  CAS  PubMed  Google Scholar 

  13. Appel KE (2004) Organotincompounds: toxicocinetic aspects. Drug Metab Rev 36:763–786

    Article  CAS  PubMed  Google Scholar 

  14. Martin RC, Dixon DG, Maguire RJ, Hodson PJ, Kacz RJ (1989) Acute toxicity, uptake, depuration and tissue distribution of tri-n-butyltin in rainbow trout, Salmo gardneri. Aquat Toxicol 15:37–52

    Article  CAS  Google Scholar 

  15. Petersen GI, Kristensen P (1998) Bioaccumulation of lipophilic substances in fish early life stage. Environ Toxicol Chem 17(7):1385–1395

    Article  CAS  Google Scholar 

  16. Fent K, Hunn J (1993) Uptake and elimination of tributyltin in fish-yolk-sac larvae. Mar Environ Res 35(1–2):65–71

    Article  CAS  Google Scholar 

  17. Thain JE (1983) The acute toxicity of bis (tributyltin) oxide to the adults and larvae of some marine organisms. International Council Exploration Sea, Mariculture Committee E13: pp 5

  18. Brooke LT, Call DJ, Poirier SH, Markee TP, Lindberg CA, McCauley DJ, Simonson PG (1986) Acute toxicity and chronic effects of bis(tri-n-butyltin) oxide to several species of freshwater organisms. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, p 20

    Google Scholar 

  19. López-Serrano Oliver A, Sanz-Landaluze J, Muñoz-Olivas R, Guinea J, Cámara C (2011) Zebrafish larvae as a model for the evaluation of inorganic arsenic and tributyltin bioconcentration. Water Res 45:6515–6524

    Article  PubMed  Google Scholar 

  20. Dimitrov S, Dimitrova N, Parkerton T, Comber M, Bonnell M, Mekenyan O (2005) Base-line model for identifying the bioaccumulation potential of chemicals. Environ Res 16:531–554

    CAS  Google Scholar 

  21. Dong W, Muramoto W, Nagai Y, Takehana K, Stegeman JJ, Teraoka H, Hiraga T (2006) Retinal neuronal cell is a toxicological target of tributyltin in developing zebrafish. J Vet Med Sci 68(6):573–579

    Article  CAS  PubMed  Google Scholar 

  22. Gobas FA, Zhang X (1992) Measuring bioconcentration factors and rate constant of chemicals in aquatic organisms under conditions of variable water concentrations and short exposure time. Chemosphere 25(12):1961–1971

    Article  CAS  Google Scholar 

  23. Pellegrino C, Massanisso P, Morabito R (2000) Comparison of twelve selected extraction methods for the determination of butyl- and phenyltin compounds in mussel samples. Trends Anal Chem 19(2–3):97–106

    Article  CAS  Google Scholar 

  24. Kumar SJ, Tesfalidet S, Snell J, Frech W (2003) A simple method for synthesis of organotin species to investigate extraction procedures in sediments by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry. Part 1. Butyltin species. J Anal At Spectrom 18:714–719

    Article  CAS  Google Scholar 

  25. Dubalska K, Ritkowska M, Bajger-Nowak G, Konieczka P, Namiesnik J (2013) Organotin compounds: environmental fate and analytics. Crit Rev Anal Chem 43(1):35–54

    Article  CAS  Google Scholar 

  26. Ruiz Encinar J, Rodriguez Gonzalez P, García-Alonso JI, Sanz-Medel A (2002) Evaluation of extraction techniques for the determination of butyltin compounds in sediments using isotope dilution-GC/ICPMS with 118Sn and 119Sn-enriched species. Anal Chem 74:270–281

    Article  CAS  PubMed  Google Scholar 

  27. Rajendran RB, Tao H, Nakazato T, Miyazak A (2000) A quantitative extraction method for the determination of trace amounts of both butyl- and phenyltin compounds in sediments by gas chromatography-inductively coupled plasma mass spectrometry. Analyst 125:1757–1763

    Article  CAS  PubMed  Google Scholar 

  28. Ceulemans M, Adams MF (1995) Evaluation of sample preparation methods for organotin speciation analysis in sediments — focus on monobutyltin extraction. Anal Chim Acta 317:161–170

    Article  CAS  Google Scholar 

  29. Chau YF, Yang F, Maguire FRJ (1996) Improvement of extraction recovery for the monobutyltin species from sediment. Anal Chim Acta 320:165–169

    Article  CAS  Google Scholar 

  30. Ohji M, Arai T, Miyazaki N (2003) Chronic effects of tributyltin on the caprellid amphipod Caprella danilevski. Mar Pollut Bull 46:1263–1272

    Article  CAS  PubMed  Google Scholar 

  31. Abidli S (2012) TBT effects on Hexaplex trunculus and Bolinus brandaris: imposex induction and sex hormone levels insights. Ecol Indic 13(1):13–21

    Article  CAS  Google Scholar 

  32. Sant’Anna BS et al (2012) Effects of TBT exposure in hermit crabs: Clibanarious vittatus as a model. Environ Toxicol Chem 31(3):632–638

    Article  PubMed  Google Scholar 

  33. An LH, Zhang Y, Song SS, Liu Y, Li ZC, Chen H, Zhao XR, Lei K, Gao JM, Zheng BH (2013) Imposex effects on the veined rapa whelk (Rapana vedosa) in Bohai Bay, China. Ecotoxicology 22(3):538–547

    Article  CAS  PubMed  Google Scholar 

  34. Santos DM, Sant’Anna BS, Godoi AFL, Turra A, Marchi MR (2011) Contamination and impact of organotin compounds on the Brazilian coast. In: Ortiz AC, Griffin NB (eds) Pollution monitoring. Nova, Hauppauge, pp 31–59

    Google Scholar 

  35. de Castro IB, Perina FC, Fillman G (2012) Organotin contamination in South American coastal areas. Environ Monit Assess 184(3):1781–1799

    Article  CAS  PubMed  Google Scholar 

  36. Borghi V, Porte C (2002) Organotin pollution in deep-sea fish from the Northwestern Mediterranean. Environ Sci Technol 36:4224–4228

    Article  CAS  PubMed  Google Scholar 

  37. Sousa A, Ikemoto T, Takahashi S, Barroso C, Tanabe S (2009) Distribution of synthetic organotins and total tin levels in Mytilus galloprovincialis along the Portuguese coast. Mar Pollut Bull 58:1130–1136

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki T, Yamamoto I, Yamada H, Kaniwa N, Kondo K, Murayama M (1998) Accumulation, metabolism, and depuration of organotin compounds in the marine mussels Mytilus graynus and Mytilus edulis under natural conditions. J Agric Food Chem 46:304–313

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Fang C, Hong H, Wang WX (2010) Gender differences in TBT accumulation and transformation in Thais clavigera after aqueous and dietary exposure. Aquat Toxicol 99:413–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Spanish Ministry of Research and Innovation (Project ATP-Toxbio, grant reference CTQ2011-28328-C02-01 as well as Interreg “Orque Sudoe” Project) have founded this work. The authors also wish to acknowledge the grant received by A. Rocha Borges from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riansares Muñoz-Olivas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, A.R., López-Serrano Oliver, A., Gallego-Gallegos, M. et al. Transformation of Tributyltin in Zebrafish Eleutheroembryos (Danio rerio). Biol Trace Elem Res 162, 317–323 (2014). https://doi.org/10.1007/s12011-014-0144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0144-z

Keywords

Navigation