Skip to main content

Advertisement

Log in

Estimation of Copper and Iron Burden in Biological Samples of Various Stages of Hepatitis C and Liver Cirrhosis Patients

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

There is accumulative evidence that the metabolism of iron (Fe) and copper (Cu) is altered in human due to infections, indicating that both elements have roles in pathogenesis and progress of viral diseases. In the present study, the correlation of Cu and Fe was evaluate in biological samples (serum and scalp hair) of hepatitis C (hepatitis C virus (HCV)) patients of both genders at different stages. For comparative study, the scalp hair and serum samples of healthy individuals of same age group (30–50 years) and socioeconomic status were collected. The biological samples were analyzed for Fe and Cu by atomic absorption spectroscopy after microwave-assisted acid digestion. The validity and accuracy of methodology were checked by certified reference materials of same matrixes. The levels of Cu and Fe in biological samples were enhanced in hepatic disorder patients, including acute (after diagnosis test, anti-HCV sero-positive) hepatic fibrosis and liver cirrhosis as compared to healthy referents. The difference was significant (p < 0.01) in the case of liver cirrhotic patients. It was observed that the data of Cu and Fe in referents and patients of both genders had normal distributions. The inter-elemental correlation (r) among Cu vs Fe in serum and scalp hair samples of referents and patients were not significant in both genders (p > 0.1) except in the first stage of HCV (p < 0.1). It was concluded that the increase of Cu and Fe content in human body seems to contribute to the development of cirrhosis in patients with viral hepatitis C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (1997) National Institutes of Health Consensus Development Conference Panel statement: management of hepatitis C. Hepatology 26(suppl 1):2S–10S

  2. Bhaskaram P (2002) Micronutrient malnutrition, infection, and immunity: an overview. Nutr Rev 60:40–45

    Article  Google Scholar 

  3. Filipowicz MS (2010) Interferon therapy of hepatitis C: molecular insights into success and failure. Swiss Med Wkly 140(1–2):3–11

    Google Scholar 

  4. Lavanchy D (2007) The global burden of hepatitis C. Liver Int 29(Suppl 1):74–81

    Google Scholar 

  5. Lauer G, Walker BD (2001) Hepatitis C virus infection. N Engl J Med 345:41–52

    Article  CAS  PubMed  Google Scholar 

  6. Deuffic S, Buffat L, Poynard T, Valleron AJ (1999) Modeling the hepatitis C virus epidemic in France. Hepatology 29:1596–1601

    Article  CAS  PubMed  Google Scholar 

  7. Deuffic S, Poynard T, Valleron AJ (1999) Correlation between HCV prevalence and hepatocellular carcinoma mortality in Europe. J Viral Hepat 6:411–413

    Article  CAS  PubMed  Google Scholar 

  8. Alter MJ, Kruszon-Moran D, Nainan OV et al (1999) The prevalence of hepatitis C virus infection in the United States, 1988 through 1994. N Engl J Med 341:556–562

    Article  CAS  PubMed  Google Scholar 

  9. Yen en S (1996) Hepatitis C virus. In: Willke TA, Sletir G, Doanay M (eds) Infectious disease. Nobel Medical, Istanbul, pp. 700–04

  10. Chen DS, Kuo GC, Sung JL et al (1990) Hepatitis C virus infection in an area hyperendemic for hepatitis B and chronic liver disease: the Taiwan experience. J Infect Dis 162:817e22

    Google Scholar 

  11. Peterhans E (1982) Reactive oxygen species and nitric oxide in viral diseases. Beisel WR. Single nutrients and immunity. Am J Clin Nutr 35(2 Suppl):417–468

    Google Scholar 

  12. Bray TM, Bettger WJ (1990) The physiological role of zinc as an antioxidant. Free Rad Biol Med 8:281–291

    Article  CAS  PubMed  Google Scholar 

  13. Jain SK, Pemberton PW, Smith A et al (2002) Oxidative stress in chronic hepatitis C: not just a feature of late stage disease. J Hepatol 36:805–811

    Article  CAS  PubMed  Google Scholar 

  14. Loguercio C, Federico A (2003) Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med 34:1–10

    Article  CAS  PubMed  Google Scholar 

  15. Toubi E, Kessel A, Goldstein L et al (2001) Enhanced peripheral T-cell apoptosis in chronic hepatitis C virus infection: association with liver disease severity. J Hepatol 35:774–780

    Article  CAS  PubMed  Google Scholar 

  16. Loguercio C, Girolama VD, Fedelico AA et al (1997) Trace element and chronic liver diseases. J Trace Elem Med Biol 11:158–161

    Article  CAS  PubMed  Google Scholar 

  17. Di Bisceglie AM, Axiotis CA, Hoofnagle JH, Bacon BR (1992) Measurements of iron status in patients with chronic hepatitis. Gastroenterol 102:2108–2113

    Google Scholar 

  18. Haque S, Chandra B, Gerber MA, Lok AS (1996) Iron overload in patients with chronic hepatitis C: a clinicopathologic study. Hum Pathol 27:1277–1281

    Article  CAS  PubMed  Google Scholar 

  19. Poo JL, Romero RR, Robles JA et al (1997) Diagnostic value of the copper/zinc ratio in digestive cancer: a case control study. Arch Med Res 28:259–263

    CAS  PubMed  Google Scholar 

  20. Zowczak M, Iskra M, Torli’nski L, Cofta S (2001) Analysis of serum copper and zinc concentrations in cancer patients. Biol Trace Elem Res 82:1–8

    Article  CAS  PubMed  Google Scholar 

  21. Poo JL, Rosas-Romero R, Montemayor AC, Isoard F, Uribe M (2003) Diagnostic value of the copper/zinc ratio in hepatocellular carcinoma: a case control study. J Gastroenterol 38:45–51

    Article  PubMed  Google Scholar 

  22. Halifeoglu I, Gur B, Aydin S, Ozturk A (2004) Plasma trace elements, vitamin B12, folate, and homocysteine levels in cirrhotic patients compared to healthy controls. Biochemistry (Mosc) 69:693–696

    Article  CAS  Google Scholar 

  23. Meram I, Sirmatel F, Ahi S, Tarakcioglu M (2004) Plasma copper and zinc levels in chronic viral hepatitis. Saudi Med J 25:1066–1069

    PubMed  Google Scholar 

  24. Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Aspects Med (1-2):1–87

  25. Di Bisceglie AM, Axiotis CA, Hoofnagle JH, Bacon BR (1992) Measurements of iron status in patients with chronic hepatitis. Gastroenterology 102:2108–2113

    PubMed  Google Scholar 

  26. Van Thiel DH, Friedlander L, Fagiuoli S et al (1994) Response to interferon alpha therapy is influenced by the iron content of the liver. J Hepatol 20:410–415

    Article  PubMed  Google Scholar 

  27. Fargion S, Fracanzani AL, Sampietro M et al (1997) Liver iron influences the response to interferon alpha therapy in chronic hepatitis C. Eur J Gastroenterol Hepatol 9:497–503

    Article  CAS  PubMed  Google Scholar 

  28. Andant C, Lamoril J, Edery J et al (1996) Hepatic iron concentration (HIC) and serum iron parameters in patients with chronic hepatitis C. Hepatology 26:478A

    Google Scholar 

  29. Hezode C, Cazeneuve C, Coue O et al (1999) Liver iron accumulation in patients with chronic active hepatitis C: prevalence and role of hemochromatosis gene mutations and relationship with hepatic histological lesions. J Hepatol 31:979–984

    Article  CAS  PubMed  Google Scholar 

  30. Pietrangelo A (1996) Metals, oxidative stress and hepatic fibrogenesis. Semin Liv Dis 16:13–30

    Article  CAS  Google Scholar 

  31. Videla LA, Fernandez V, Tapia G, Varela P (2003) Oxidative stress-mediated hepatotoxicity of iron and copper: role of Kupffer cells. Biometals 16:103–111

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi M, Kuge T, Endoh D et al (2000) Hepatic copper accumulation induces DNA strand breaks in the liver cells of Long-Evans Cinnamon strain rats. Biochem Biophys Comm 276:174–178

    Article  CAS  Google Scholar 

  33. Hatano R, Ebara M, Fukuda H et al (2000) Accumulation of copper in the liver and hepatic injury in chronic hepatitis C. J Gastroenterol Hepatol 15(7):786–791

    Article  CAS  PubMed  Google Scholar 

  34. Bremner I (1998) Manifestations of copper excess. Am J Clin Nutr 67:1069s

    CAS  PubMed  Google Scholar 

  35. Arakawa Y, Suzuki K, Suzuki K et al (1990) Liver diseases and trace elements. Saishin-Igaku 4:668–677 (in Japanese)

    Google Scholar 

  36. Afridi HI, Kazi TG, Kazi N et al (2008) Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Res Clin Pract 80:280–288

    Article  CAS  PubMed  Google Scholar 

  37. Afridi HI, Kazi TG, Kazi GH et al (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spect letter 39:203–214

    Article  CAS  Google Scholar 

  38. Wright RO, Amarasiriwardena C, Woolf AD et al (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicol 27(2):210–216

    Article  CAS  Google Scholar 

  39. Panhwar AH et al (2013) Evaluation of calcium and magnesium in scalp hair samples of population consuming different drinking water: risk of kidney stone. Biol Trace Elem Res 156(1–3):67–73

    Article  CAS  PubMed  Google Scholar 

  40. Nakayama A, Fukuda H, Ebara M et al (2002) A new diagnostic method for chronic hepatitis, liver cirrhosis and hepatocellular carcinoma based on serum metallothionein, copper and zinc levels. Biol Pharm Bull 25(4):426–431

    Article  CAS  PubMed  Google Scholar 

  41. Afridi HI, Kazi TG, Arain MB et al (2007) Determination of Cd and Pb in biological samples by three ultrasonic-based samples treatment procedures followed by electrothermal atomic absorption spectrophotometer. J AOAC Int 90(2):470–478

    CAS  PubMed  Google Scholar 

  42. Andrade LJO, D’Oliveira A, Melo RC et al (2009) Association between hepatitis C and hepatocellular carcinoma. J Glob Infect Dis 1(1):33–37

    Article  Google Scholar 

  43. Marzouk D, Sass J, Bakr I et al (2007) Metabolic and cardiovascular risk profiles and hepatitis C virus infection in rural Egypt. Gut 56:1105–1110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Limdi JK, Hyde GM (2003) Evaluation of abnormal liver function tests. Postgrad Med J 79:307–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Cavallo-Perin P, Pacini G, Cerutti F et al (1995) Insulin resistance and hyperinsulinemia in homozygous beta-thalassemia. Metabolism 44:281–286

    Article  CAS  PubMed  Google Scholar 

  46. Czuczejko J, Zachara BA, Staubach-Topczewska E et al (2003) Selenium, glutathione and glutathione peroxidases in blood of patients with chronic liver diseases. Acta Biochim Pol 50:1147–1154

    CAS  PubMed  Google Scholar 

  47. Williams AL, Hoofnagle JH (1988) Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis. Relationship to cirrhosis. Gastroenterology 95:734–739

    CAS  PubMed  Google Scholar 

  48. Dial SM (1995) Clinicopathologic evaluation of the liver. Vet Clin N Am Small Anim Pract 25(2):257–273

    CAS  Google Scholar 

  49. Tilley L, Smith F (2000) The 5-minute veterinary consult: Canine and Feline, 2nd edn. Lippincott Williams & Wilkins, Baltimore, pp 710–711

    Google Scholar 

  50. Akin K, Beyler AR, Kaya M, Erden E (2003) The importance of iron and copper accumulation in the pathogenesis of non-alcoholic steatohepatitis. Turk J Gastroenterol 14(4):228–233

    PubMed  Google Scholar 

  51. Britton RS (1996) Metal-induced hepatotoxicity. Sem Liv Dis 16:3–12

    Article  CAS  Google Scholar 

  52. Tanasescu C, Baldescu R, Chirulescu Z (1996) Interdependence between Zn and Cu serum concentrations and serum immunoglobulins in liver diseases. Rom J Int Med 34:217–224

    CAS  Google Scholar 

  53. Kalkan A, Bulut V, Avci S, Celik I, Bingol NK (2002) Trace elements in viral hepatitis. J Trace Elem Med Biol 16:227–230

    Article  CAS  PubMed  Google Scholar 

  54. Standstead HH (1995) Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr 61:6215–6245

    Google Scholar 

  55. Cunningham-Rumdles S, Ahrn S, Abuav-Nussbaum R, Dnistrian A (2002) Development of immunocompetence: role of micronutrients and microorganisms. Nutr Rev 60:68–72

    Article  Google Scholar 

  56. Sakurai H, Fukudome A, Tawa R (1992) Unusual accumulation of copper related to induction of metallothionein in the liver of LEC rats. Biochem Biophys Res Commun 184:1393–1397

    Article  CAS  PubMed  Google Scholar 

  57. Sakurai H, Satoh H, Hatanaka A (1994) Unusual generation of hydroxyl radicals in hepatic copper-metallothionein of LEC (Long Evans Cinnamon) rats in the presence of hydrogen peroxide. Biochem Biophys Res Commun 199:313–318

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki KT, Rui M, Ueda J, Ozawa T (1996) Production of hydroxyl radicals by copper-containing metallothionein: roles as prooxidant. Toxicol Appl Pharmacol 141:231–237

    Article  CAS  PubMed  Google Scholar 

  59. Sokol RJ, Devereaux MW, O’Brien K, Khandwala RA, Loehr JP (1993) Abnormal hepatic mitochondrial respiration and cytochrome C oxidase activity in rats with long-term copper overload. J Gastroenterol 105:178–187

    CAS  Google Scholar 

  60. Bonkovsky HL, Banner BF, Rothman AL (1997) Iron and chronic viral hepatitis. J Hepatol 25:759–768

    Article  CAS  Google Scholar 

  61. Bonkovsky HL, Javaid Q, Tortorelli K (1999) Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol 31:421–429

    Article  CAS  PubMed  Google Scholar 

  62. Arain SA et al (2013) Investigation of alteration in the levels of iron and copper in scalp hair samples of patients having different types of viral hepatitis. Biol Trace Elem Res 156(1–3):5–11

    Article  CAS  Google Scholar 

  63. Silvia IS, Perez RM, Oliveira PV et al (2005) Iron overload in patients with chronic hepatitis C virus infection: clinical and histological study. J Gastroentrol Hepatol 20:243–248

    Article  Google Scholar 

  64. Weiss G (2002) Iron and immunity: a double-edged sword. Eur J Clin Invest 32:70–78

    Article  CAS  PubMed  Google Scholar 

  65. Metwally MA, Zein NN (2004) Clinical significance of hepatic iron deposition and serum iron values in patients with chronic hepatitis C infection. Am J Gastroenterol 99:286–291

    Article  CAS  PubMed  Google Scholar 

  66. Sikorska K, Stalke P, Lakomy EA et al (2003) Disturbances of iron metabolism in chronic liver diseases. Med Sci Monit 9:64–67

    PubMed  Google Scholar 

  67. Cardoso EM, Duarte MA, Ribeiro E et al (2004) A study of some hepatic immunological markers, iron load and virus genotype in chronic hepatitis C. J Hepatol 41:319–326

    Article  CAS  PubMed  Google Scholar 

  68. Milne DB (1999) Trace elements. In: Burtis CA, Ashwood ER (eds) Tietz textbook of clinical chemistry, 3rd edn. WB Saunders, Philadelphia, pp 1029–1056

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Imran Afridi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arain, S.A., Kazi, T.G., Afridi, H.I. et al. Estimation of Copper and Iron Burden in Biological Samples of Various Stages of Hepatitis C and Liver Cirrhosis Patients. Biol Trace Elem Res 160, 197–205 (2014). https://doi.org/10.1007/s12011-014-0058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0058-9

Keywords

Navigation