Skip to main content
Log in

Serum Zinc Concentration Is Inversely Associated with Insulin Resistance but Not Related with Metabolic Syndrome in Nondiabetic Korean Adults

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although zinc was known to be associated with insulin metabolism and diabetes, the relationship of serum zinc concentration with insulin resistance (IR) and metabolic syndrome (MetS) was not well investigated in general population. The aim of this study is to evaluate the relationships of serum zinc concentration with IR and MetS in a nondiabetic adult population. This cross-sectional study included 656 men and 825 women who were nondiabetic adults from the fifth Korea National Health and Nutrition Examination Survey conducted in 2010. Serum zinc concentration and metabolic parameters were measured. IR was estimated by homeostatic model assessment (HOMA2). MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Serum zinc concentration was negatively correlated with homeostasis model assessment for insulin resistance (HOMA2-IR) in men (r = −0.104, P = 0.008), but not in women. After adjusting for conventional cardiovascular risk factors, the inverse correlation was significant in both men and women (B = −0.262, SE = 0.060 for men, and B = −0.129, SE = 0.052 for women). However, serum zinc concentration was not different between the groups with and without MetS (P = 0.752 for men and P = 0.371 for women). In conclusion, serum zinc concentration was inversely associated with IR but not related to MetS in nondiabetic adult population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zalewski PD, Millard SH, Forbes IJ, Kapaniris O, Slavotinek A, Betts WH, Ward AD, Lincoln SF, Mahadevan I (1994) Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J Histochem Cytochem 42(7):877–884

    Article  CAS  PubMed  Google Scholar 

  2. Chimienti F (2013) Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev 26(1):1–11. doi:10.1017/S0954422412000212

    Article  CAS  PubMed  Google Scholar 

  3. Roussel AM, Kerkeni A, Zouari N, Mahjoub S, Matheau JM, Anderson RA (2003) Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus. J Am Coll Nutr 22(4):316–321

    Article  CAS  PubMed  Google Scholar 

  4. Wiernsperger NF (2003) Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab 29(6):579–585

    Article  CAS  PubMed  Google Scholar 

  5. Lann D, LeRoith D (2007) Insulin resistance as the underlying cause for the metabolic syndrome. Med Clin N Am 91(6):1063–1077. doi:10.1016/j.mcna.2007.06.012, viii

    Article  CAS  PubMed  Google Scholar 

  6. Yubero-Serrano EM, Delgado-Lista J, Pena-Orihuela P, Perez-Martinez P, Fuentes F, Marin C, Tunez I, Tinahones FJ, Perez-Jimenez F, Roche HM, Lopez-Miranda J (2013) Oxidative stress is associated with the number of components of metabolic syndrome: LIPGENE study. Exp Mol Med 45:e28. doi:10.1038/emm.2013.53

    Article  PubMed Central  PubMed  Google Scholar 

  7. Anetor JI, Senjobi A, Ajose OA, Agbedana EO (2002) Decreased serum magnesium and zinc levels: atherogenic implications in type-2 diabetes mellitus in Nigerians. Nutr Health 16(4):291–300

    Article  CAS  PubMed  Google Scholar 

  8. Xu J, Zhou Q, Liu G, Tan Y, Cai L (2013) Analysis of serum and urinal copper and zinc in Chinese northeast population with the prediabetes or diabetes with and without complications. Oxidative Med Cell Longev 2013:635214. doi:10.1155/2013/635214

    Google Scholar 

  9. Marreiro DN, Geloneze B, Tambascia MA, Lerario AC, Halpern A, Cozzolino SM (2006) Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 112(2):109–118

    Article  CAS  PubMed  Google Scholar 

  10. Sun Q, van Dam RM, Willett WC, Hu FB (2009) Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care 32(4):629–634. doi:10.2337/dc08-1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hashemipour M, Kelishadi R, Shapouri J, Sarrafzadegan N, Amini M, Tavakoli N, Movahedian-Attar A, Mirmoghtadaee P, Poursafa P (2009) Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens) 8(4):279–285

    Article  Google Scholar 

  12. Suarez-Ortegon MF, Ordonez-Betancourth JE, Aguilar-de Plata C (2013) Dietary zinc intake is inversely associated to metabolic syndrome in male but not in female urban adolescents. Am J Hum Biol 25(4):550–554. doi:10.1002/ajhb.22408

    Article  PubMed  Google Scholar 

  13. Ghasemi A, Zahediasl S, Hosseini-Esfahani F, Azizi F (2014) Gender differences in the relationship between serum zinc concentration and metabolic syndrome. Ann Hum Biol. doi:10.3109/03014460.2013.870228

    PubMed  Google Scholar 

  14. Czernichow S, Vergnaud AC, Galan P, Arnaud J, Favier A, Faure H, Huxley R, Hercberg S, Ahluwalia N (2009) Effects of long-term antioxidant supplementation and association of serum antioxidant concentrations with risk of metabolic syndrome in adults. Am J Clin Nutr 90(2):329–335. doi:10.3945/ajcn.2009.27635

    Article  CAS  PubMed  Google Scholar 

  15. Suliburska J, Cofta S, Gajewska E, Kalmus G, Sobieska M, Samborski W, Krejpcio Z, Drzymala-Czyz S, Bogdanski P (2013) The evaluation of selected serum mineral concentrations and their association with insulin resistance in obese adolescents. Eur Rev Med Pharmacol Sci 17(17):2396–2400

    CAS  PubMed  Google Scholar 

  16. Ortega RM, Rodriguez-Rodriguez E, Aparicio A, Jimenez AI, Lopez-Sobaler AM, Gonzalez-Rodriguez LG, Andres P (2012) Poor zinc status is associated with increased risk of insulin resistance in Spanish children. Br J Nutr 107(3):398–404. doi:10.1017/S0007114511003114

    Article  CAS  PubMed  Google Scholar 

  17. Islam MR, Arslan I, Attia J, McEvoy M, McElduff P, Basher A, Rahman W, Peel R, Akhter A, Akter S, Vashum KP, Milton AH (2013) Is serum zinc level associated with prediabetes and diabetes?: a cross-sectional study from Bangladesh. PLoS One 8(4):e61776. doi:10.1371/journal.pone.0061776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z (1998) Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr 17(6):564–570

    Article  CAS  PubMed  Google Scholar 

  19. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 285 (19):2486–2497

  20. Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ, Kim DY, Kwon HS, Kim SR, Lee CB, Oh SJ, Park CY, Yoo HJ (2007) Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract 75(1):72–80. doi:10.1016/j.diabres.2006.04.013

    Article  PubMed  Google Scholar 

  21. Institute NRRD (2006) Food composition table. 7 edn., Suwon Korea

  22. Van der Schouw YT, Verbeek AL, Ruijs JH (1992) ROC curves for the initial assessment of new diagnostic tests. Fam Pract 9(4):506–511

    Article  PubMed  Google Scholar 

  23. Simon SF, Taylor CG (2001) Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med (Maywood) 226(1):43–51

    CAS  Google Scholar 

  24. Farvid MS, Siassi F, Jalali M, Hosseini M, Saadat N (2004) The impact of vitamin and/or mineral supplementation on lipid profiles in type 2 diabetes. Diabetes Res Clin Pract 65(1):21–28. doi:10.1016/j.diabres.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  25. Gunasekara P, Hettiarachchi M, Liyanage C, Lekamwasam S (2011) Effects of zinc and multimineral vitamin supplementation on glycemic and lipid control in adult diabetes. Diabetes Metab Syndr Obes 4:53–60. doi:10.2147/DMSO.S16691

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Yu Y, Cai Z, Zheng J, Chen J, Zhang X, Huang XF, Li D (2012) Serum levels of polyunsaturated fatty acids are low in Chinese men with metabolic syndrome, whereas serum levels of saturated fatty acids, zinc, and magnesium are high. Nutr Res 32(2):71–77. doi:10.1016/j.nutres.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  27. Obeid O, Elfakhani M, Hlais S, Iskandar M, Batal M, Mouneimne Y, Adra N, Hwalla N (2008) Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of Lebanese adults. Biol Trace Elem Res 123(1–3):58–65. doi:10.1007/s12011-008-8112-0

    Article  CAS  PubMed  Google Scholar 

  28. Pizent A, Pavlovic M, Jurasovic J, Dodig S, Pasalic D, Mujagic R (2010) Antioxidants, trace elements and metabolic syndrome in elderly subjects. J Nutr Health Aging 14(10):866–871

    Article  CAS  PubMed  Google Scholar 

  29. Koo SI, Ramlet JS (1983) Dietary cholesterol decreases the serum level of zinc: further evidence for the positive relationship between serum zinc and high-density lipoproteins. Am J Clin Nutr 37(6):918–923

    CAS  PubMed  Google Scholar 

  30. Freeland-Graves JH, Friedman BJ, Han WH, Shorey RL, Young R (1982) Effect of zinc supplementation on plasma high-density lipoprotein cholesterol and zinc. Am J Clin Nutr 35(5):988–992

    CAS  PubMed  Google Scholar 

  31. Hooper PL, Visconti L, Garry PJ, Johnson GE (1980) Zinc lowers high-density lipoprotein-cholesterol levels. JAMA 244(17):1960–1961

    Article  CAS  PubMed  Google Scholar 

  32. Haase H, Maret W (2005) Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 18(4):333–338. doi:10.1007/s10534-005-3707-9

    Article  CAS  PubMed  Google Scholar 

  33. Tang X, Shay NF (2001) Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3 T3-L1 fibroblasts and adipocytes. J Nutr 131(5):1414–1420

    CAS  PubMed  Google Scholar 

  34. Levine AS, McClain CJ, Handwerger BS, Brown DM, Morley JE (1983) Tissue zinc status of genetically diabetic and streptozotocin-induced diabetic mice. Am J Clin Nutr 37(3):382–386

    CAS  PubMed  Google Scholar 

  35. Krebs NF (2000) Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr 130(5S Suppl):1374S–1377S

    CAS  PubMed  Google Scholar 

  36. DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237(3):E214–E223

    CAS  PubMed  Google Scholar 

  37. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27(6):1487–1495

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sang Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, BI., Kim, M.J., Koo, H.S. et al. Serum Zinc Concentration Is Inversely Associated with Insulin Resistance but Not Related with Metabolic Syndrome in Nondiabetic Korean Adults. Biol Trace Elem Res 160, 169–175 (2014). https://doi.org/10.1007/s12011-014-0045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0045-1

Keywords

Navigation