Skip to main content
Log in

Dimethoate Induces Kidney Dysfunction, Disrupts Membrane-Bound ATPases and Confers Cytotoxicity Through DNA Damage. Protective Effects of Vitamin E and Selenium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Dimethoate (DM) is an organophosphate insecticide widely used in agriculture and industry and has toxic effects on non-target organisms especially mammalian. However, we still know little about DM-induced kidney injury and its alleviation by natural antioxidants. In the present study, selenium (Se), vitamin E, DM, Se+DM, vitamin E+DM, Se+vitamin E+DM were given to adult rats for 4 weeks. Plasma creatinine and uric acid, kidney MDA, PC, H2O2 and AOPP levels were higher, while Na+-K+-ATPase and LDH values were lower in the DM group than those of controls. A smear without ladder formation on agarose gel was shown in the DM group, indicating random DNA degradation and DM-induced genotoxicity. A decrease in kidney GSH, NPSH and plasma urea levels and an increase in GPx, SOD and catalase activities were observed in the DM group when compared to those of controls. Plasma cystatin C levels increased, indicating a decrease in glomerular filtration rate. When Se or vitamin E was added through diet, the biochemical parameters cited above were partially restored in Se+DM and vitamin E+DM than DM group. The joint effect of Se and vitamin E was more powerful against DM-induced oxidative stress and kidney dysfunction. The changes in biochemical parameters were substantiated by histological data. In conclusion, our results indicated a possible mechanism of DM-induced nephrotoxicity, where renal genotoxicity was noted, membrane-bound ATPases and plasma biomarkers were disturbed. Se and vitamin E ameliorated the toxic effects of this pesticide in renal tissue suggesting their role as potential antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Betrosian A, Balla M, Kafiri G, Kofinas G, Makri R, Kakouri A (1995) Multiple systems organ failure from organophosphate poisoning. J Toxicol Clin Toxicol 33:257–260

    Article  PubMed  CAS  Google Scholar 

  2. WHO/IPCS (1996) Principles and methods for assessing direct immunotoxicity associated with exposure to chemicals, Environmental Health Criteria vol. 180. WHO, Geneva, pp 110–112

    Google Scholar 

  3. Darko G, Akoto O (2008) Dietary intake of organophosphorus pesticide residues through vegetables from Kumasi, Ghana. Food Chem Toxicol 46:3703–3706

    Article  PubMed  CAS  Google Scholar 

  4. Boon PE, Van der Voet H, Van Raaij MTM, Van Klaveren JD (2008) Cumulative risk assessment of the exposure to organophosphorus and carbamate insecticides in the Dutch diet. Food Chem Toxicol 46:3090–3098

    Article  PubMed  CAS  Google Scholar 

  5. Bakasa I, Ben Oujji N, Moczko E, Istamboulie G, Piletsky S, Piletska E, Ait-Addi E, Ait-Ichou I, Noguera T, Rouillon R (2013) Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil. J Chromatogr A 1274:13–18

    Article  Google Scholar 

  6. Araoud M, Gazzah N, Douki W, Najjar MF, Kenani A (2012) Rapid multi-residue method for the determination of pesticide residues in human serum. Afr J Biotechnol 11:12579–12585

    Article  CAS  Google Scholar 

  7. Yamada H, Hishida A, Kumagai H et al (1992) Effects of age renal diseases and diabetes mellitus on the renal size reduction accompanied by the decrease of renal function. Nippon-Jinzo-Gakkai-Shi 34:1071–1075

    PubMed  CAS  Google Scholar 

  8. Eddleston M, Eyer P, Worek F, Mohamed F, Senarathna L, Von Meyer L, Juszczak E, Hittarage A, Azhar S, Dissanayake W, Sheriff MH, Szinicz L, Dawson AH, Buckley NA (2005) Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study. Lancet 366:1452–1459

    Article  PubMed  CAS  Google Scholar 

  9. De-Bleecker J, Van-Den-Neucker K, Colradyn F (1993) Intermediate syndrome in organophosphorus poisoning: a prospective study. Crit Care Med 21:1706–1711

    Article  PubMed  CAS  Google Scholar 

  10. Dongren Y, Taol L, Fengsheng H (1999) Electrophysiological studies in rats of acute dimethoate poisoning. Toxicol Lett 107:1–3

    Article  Google Scholar 

  11. Institoris L, Siroki O, Desi I, Undeger U (1999) Immunotoxicological examination of repeated dose combined exposure by dimethoate and two heavy metals in rats. Hum Exp Toxicol 18:88–94

    Article  PubMed  CAS  Google Scholar 

  12. Kamath V, Rajini PS (2007) Altered glucose homeostasis and oxidative impairment in pancreas of rats subjected to dimethoate intoxication. Toxicology 231:137–146

    Article  PubMed  CAS  Google Scholar 

  13. Kayan M, Nazıroğlu M, Barak C (2010) Effects of vitamin C and E combination on trace element levels in blood of smokers and nonsmokers radiology X-ray technicians. Biol Trace Elem Res 136:140–148

    Article  PubMed  CAS  Google Scholar 

  14. Nazıroğlu M, Yoldaş N, Uzgur EN, Kayan M (2013) Role of contrast media on oxidative stress, Ca2+ signaling and apoptosis in kidney. J Membr Biol 246:91–100

    Article  PubMed  Google Scholar 

  15. Bal R, Nazıroğlu M, Türk G, Yılmaz Ö, Kuloğlu T, Etem E, Baydas G (2012) Imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats. Cell Biochem Funct 30:492–499

    Article  PubMed  CAS  Google Scholar 

  16. Shirpoor A, Salami S, Khadem-Ansari MH, Ilkhanizadeh B, Pakdel FG, Khademvatani K (2009) Cardioprotective effect of vitamin E: rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat. J Diabetes Complicat 23:310–316

    Article  PubMed  Google Scholar 

  17. Nazıroğlu M (2009) Role of selenium on calcium signaling and oxidative stress- induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  PubMed  Google Scholar 

  18. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  PubMed  CAS  Google Scholar 

  19. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  PubMed  CAS  Google Scholar 

  20. Nazıroğlu M, Karaoğlu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    Article  PubMed  Google Scholar 

  21. Cemek M, Buyukben A, Buyukokuroğlu ME, Aymelek F, Tur L (2010) Protective roles of vitamin E (a-tocopherol), selenium and vitamin E plus selenium in organophosphate toxicity in vivo: a comparative study. Pest Biochem Physiol 96:113–118

    Article  CAS  Google Scholar 

  22. Council of European Communities (1986) Council instructions about the protection of living animals used in scientific investigations. Off J Eur Communities L358:1–18, JO 86/609/CEE

    Google Scholar 

  23. Ben Amara I, Soudani N, Hakim A, Bouaziz H, Troudi A, Zeghal KM, Zeghal N (2012) Dimethoate-induced oxidative damage in erythrocytes of female adult rats: possible protective effect of vitamin E and selenium supplemented to diet. Toxicol Ind Health 28:222–237

    Article  PubMed  CAS  Google Scholar 

  24. Lowry OH, Rosebrugh NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  25. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    PubMed  CAS  Google Scholar 

  26. Ou P, Wolff SP (1996) A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J Biochem Biophys Methods 31:59–67

    Article  PubMed  CAS  Google Scholar 

  27. Kayali R, Cakatay U, Akcay T, Altug T (2006) Effect of alpha-lipoic acid supplementation on markers of protein oxidation in post-mitotic tissues of ageing rat. Cell Biochem Funct 24:79–85

    Article  PubMed  CAS  Google Scholar 

  28. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Method Enzymol 233:357–363

    CAS  Google Scholar 

  29. Kawamoto EM, Munhoz CD, Glezer I, Bahia VS, Caramelli P, Nitrini R, Gorjao R, Curi R, Scavone C, Marcourakis T (2005) Oxidative state in platelets and erythrocytes in aging and Alzheimer’s disease. Neurobiol Aging 26:857–864

    Article  PubMed  CAS  Google Scholar 

  30. Kanno S, Shouji A, Hirata R, Asou K, Ishikawa M (2004) Effects of naringin on cytosine arabinoside (Ara-C)-induced cytotoxicity and apoptosis in P388 cells. Life Sci 75:353–365

    Article  PubMed  CAS  Google Scholar 

  31. Ellman GL, Courtney KD, Andres V, Featherstone R (1961) A new and rapid colorimetric determination of acetyl cholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  32. Jollow DJ, Mitchell JR, Zampaglione N, Gillete JR (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobenzeneoxide as the hepatotoxic intermediate. Pharmacology 11:151–169

    Article  PubMed  CAS  Google Scholar 

  33. Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    CAS  Google Scholar 

  34. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acryl amide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  35. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Method Enzymol 105:114–121

    CAS  Google Scholar 

  36. Roos JF, Doust J, Tett SE, Kirkpatrick CM (2007) Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—a meta-analysis. Clin Biochem 40:383–391

    Article  PubMed  CAS  Google Scholar 

  37. Donadio C, Lucchesi A, Tramonti G, Bianchi C (1997) Creatinine clearance predicted from body cell mass is a good indicator of renal function. Kidney Int Suppl 63:166–168

    Google Scholar 

  38. Levander OA, Morris VC (1971) Effects of vitamin E and selenium on Rubidium-86 uptake by rat liver slices. J Nutr 101:1013–1022

    PubMed  CAS  Google Scholar 

  39. Astiz M, De Catalfo GEH, De Alaniz MJT, Marra CA (2009) Involvement of lipids in dimethoate-induced inhibition of testosterone biosynthesis in rat interstitial cells. Lipids 44:703–718

    Article  PubMed  CAS  Google Scholar 

  40. Novais SC, De Coen W, Amorim MJ (2012) Gene expression responses linked to reproduction effect concentrations (EC 10,20,50,90) of dimethoate, atrazine and carbendazim, in Enchytraeus albidus. PLoS One 7:e36068

    Article  PubMed  CAS  Google Scholar 

  41. Burton GW, Le Page Y, Gabe EJ, Ingold KU (1980) Antioxidant activity of vitamin E and related phenols. Importance of stereoelectronic factors. J Am Chem Soc 102:7791–7792

    Article  CAS  Google Scholar 

  42. McPherson A (1994) Selenium vitamin E and biological oxidation. In: Cole DJ, Garnsworthy PJ (eds) Recent advances in animal nutrition. Butterworth and Heinemann’s, Oxford, pp 3–30

    Google Scholar 

  43. Li X, Hill KE, Burk RF, May JM (2001) Selenium spares ascorbate and α-tocopherol in cultured liver cell lines under oxidant stress. FEBS Lett 508:489–492

    Article  PubMed  CAS  Google Scholar 

  44. Diplock AT, Lucy JA (1973) The biochemical modes of action of vitamin E and selenium: a hypothesis. FEBS Lett 29:205–210

    Article  PubMed  CAS  Google Scholar 

  45. Sodhi S, Sharma A, Brar APS, Brar RS (2008) Effect of α-tocopherol and selenium on antioxidant status, lipid peroxidation and hepatopathy induced by malathion in chicks. Pest Biochem Physiol 90:82–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DGRST grants (Appui à la Recherche Universitaire de Base ARUB 99/UR/08-73), Tunisia. The authors are indebted to Miss Dalenda Kchaou for her assistance in histolological techniques and to Mr. Bejaoui Hafedh, teacher of English at Sfax Faculty of Science, who helped proofread and edited this paper.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najiba Zeghal.

Additional information

Aida Karray and Ahmed Hakim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Amara, I., Karray, A., Hakim, A. et al. Dimethoate Induces Kidney Dysfunction, Disrupts Membrane-Bound ATPases and Confers Cytotoxicity Through DNA Damage. Protective Effects of Vitamin E and Selenium. Biol Trace Elem Res 156, 230–242 (2013). https://doi.org/10.1007/s12011-013-9835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9835-0

Keywords

Navigation