Skip to main content
Log in

Effects of Supplementary Selenium Source on the Blood Parameters in Beef Cows and Their Nursing Calves

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Over 2 years, 32 beef cows nursing calves in southwest Arkansas were randomly selected from a herd of 120 that were managed in six groups and were assigned to six 5.1-ha bermudagrass (Cynodon dactylon [L.] Pers.) pastures. Treatments were assigned to pastures (two pastures/treatment) and cows had ad libitum access to one of three free-choice minerals: (1) no supplemental selenium (Se), (2) 26 mg of supplemental Se from sodium selenite per kilogram, and (3) 26 mg of supplemental Se from seleno-yeast per kilogram (designed mineral intake = 113 g/cow daily). Data were analyzed using a mixed model; year and pasture were the random effects and treatment was the fixed effect. At the beginning of the calving and breeding seasons, cows supplemented with Se had greater (P < 0.01) whole blood Se concentration (WBSe) and glutathione peroxidase activities (GSH-Px) than cows receiving no supplemental Se; cows fed seleno-yeast had greater (P ≤ 0.05) WBSe than cows fed sodium selenite, but GSH-Px did not differ (P ≥ 0.25) between the two sources. At birth and near peak lactation (late May), calves from cows supplemented with Se had greater (P < 0.01) WBSe than calves from cows fed no Se and calves from cows fed seleno-yeast had greater (P ≤ 0.01) WBSe and GSH-Px than calves from cows fed sodium selenite. Thyroxine (T4), triiodothyronine (T3), and the T4:T3 ratio in calves did not differ among treatments (P ≥ 0.35). At birth, insulin-like growth factor 1 (IGF-1) was greater (P = 0.02) in calves nursing cows with no supplemental Se than in ones with supplemental Se; in calves nursing cows with supplemental sodium selenite, IGF-1 did not differ (P = 0.96) from ones offered supplemental seleno-yeast. Selenium supplementation of gestating beef cows benefited cows and calves by increasing WBSe and GSH-Px. The use of seleno-yeast as a Se supplement compared to sodium selenite increased the WBSe of both cows and their calves without affecting the T4 to T3 conversion or IGF-1 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GSH-Px:

Glutathione peroxidase activity

Hb:

Hemoglobin

IGF-1:

Insulin-like growth factor 1

Se:

Selenium

T4 :

Thyroxin

T3 :

Triiodothyronine

WBSe:

Whole blood Se concentration

References

  1. Carter DL, Brown MJ, Allaways WH (1968) Selenium content of forage and hay crops in the Pacific Northwest. Agron J 60:532–534

    Article  CAS  Google Scholar 

  2. Pavlata L, Pechov A, Illek J (2000) Direct and indirect assessment of selenium status in cattle—a comparison. Acta Vet Brno 69:281–287

    Article  CAS  Google Scholar 

  3. Gunter SA, Beck PA, Phillips JM (2003) Effects of supplementary selenium source on the performance of and blood parameters in beef cows and their calves. J Anim Sci 81:856–864

    PubMed  CAS  Google Scholar 

  4. Waldner CL, Van De Weyer LM (2011) Selenium status at the end of the grazing season, reproductive performance and degenerative myopathy in beef herds. Can Vet J 52:1083–1088

    PubMed  Google Scholar 

  5. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465

    Article  PubMed  CAS  Google Scholar 

  6. Mulhern SA, Taylor GL, Magruder LE et al (1985) Deficient levels of dietary selenium suppress the antibody response in first and second generation mice. Nutr Res 5:201–210

    Article  CAS  Google Scholar 

  7. Burk RF (1984) Bioavailability of selenium. Ann Rev Nutr 3:53–70

    Article  Google Scholar 

  8. Rani P, Lalitha K (1996) Evidence for altered structure and impaired mitochondrial electron transport function in selenium deficiency. Biol Trace Element Res 51:225–234

    Article  CAS  Google Scholar 

  9. Beck PA, Wistuba TJ, Davis ME, Gunter SA (2005) Case study: effects of feeding supplemental organic or inorganic selenium to cow-calf pairs on selenium status and immune responses of weaned beef calves. Prof Anim Sci 21:114–120

    Google Scholar 

  10. Siddons RC, Mills CF (1981) Glutathione peroxidase activity and erythrocyte stability in calves differing in selenium and vitamin E status. Br J Nutr 46:345–355

    Article  PubMed  CAS  Google Scholar 

  11. Koller LD, Whitbeck GA, South PJ (1984) Transplacental transfer and colostral concentrations of selenium in beef cattle. Am J Vet Res 45:2507–2510

    PubMed  CAS  Google Scholar 

  12. Ortman K, Pehrson B (1999) Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J Anim Sci 77:3365–3370

    PubMed  CAS  Google Scholar 

  13. Pavlata L, Prasek J, Podhorsky A, Pechov A, Haloun T (2003) Selenium metabolism in cattle: maternal transfer of selenium to newborn calves at different selenium concentration in dams. Acta Vet Brno 72:639–646

    CAS  Google Scholar 

  14. Pehrson B, Ortman K, Madjid N, Trafikowska U (1999) The influence of dietary selenium as selenium yeast or sodium selenite on the concentration of selenium in the milk of suckler cows and on the selenium status of their calves. J Anim Sci 77:3371–3376

    PubMed  CAS  Google Scholar 

  15. Pehrson B, Knutsson M, Gyllensward M (1989) Glutathione peroxidase activity in heifers fed diets supplemented with organic and inorganic selenium compounds. Swed J Agric Res 19:53–56

    CAS  Google Scholar 

  16. Slavik P, Illek J, Brix M, Hlavicova J, Rajmon R, Jilek F (2008) Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colostrums, milk and blood of beef cows. Acta Veterinia Scandinavia 50:43–48

    Article  Google Scholar 

  17. Dickson FC, Tomlinson RH (1967) Selenium in blood and human tissues. Clin Chim Acta 16:311–321

    Article  PubMed  CAS  Google Scholar 

  18. Duntas LH (2006) The role of selenium in thyroid autoimmunity and cancer. Thyroid 16:455–460

    Article  PubMed  CAS  Google Scholar 

  19. Hawkes WC, Keim NL, Richter BD, Gustafson MB, Gale B, Mackey BE, Bonnel EL (2008) High-selenium yeast supplementation in free-living North American men: no effect on thyroid hormone metabolism or body composition. J Trace Elem Med Biol 22:131–142

    Article  PubMed  CAS  Google Scholar 

  20. Howie AF, Arthur JR, Nicol F, Walker SW, Beech SG, Beckett GJ (1998) Identification of a 57-kilodalton selenoprotein in human thyrocytes as thioredoxin reductase and evidence that its expression is regulated through the calcium-phosphoinositol signaling pathway. J Clin Endocrinol Metab 83:2052–2058

    Article  PubMed  CAS  Google Scholar 

  21. Miell JP, Taylor AM, Zini M, Maheshwari HG, Ross RJM, Valcavi R (1993) Effects of hypothyroidism and hyperthyroidism on insulin-like growth factors and growth hormone- and IGF-binding proteins. J Clin Endocrinol Metab 76:950–955

    Article  PubMed  CAS  Google Scholar 

  22. Kandemir N, Yordam N, Oguz H (1997) Age-related differences in serum insulin-like growth factor-1 and IGF-binding protein-3 levels in congenital hypothyroidism. J Pediatr Endocrinol Metab 10:379–385

    Article  PubMed  CAS  Google Scholar 

  23. Co Ng LL, Lang CH, Bereket A, Purandare A, Smaldone A, Wilson TA (2000) Effect of hypothyroidism on insulin-like growth factor-1 (IGF) and IGF-binding proteins in adolescent children. J Prediatr Endocrinol Metab 13:1073–1080

    CAS  Google Scholar 

  24. Berry MJ, Banu L, Larsen PR (1991) Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438–440

    Article  PubMed  CAS  Google Scholar 

  25. Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576

    Article  PubMed  CAS  Google Scholar 

  26. Gunter SA, Cassida KM, Beck PA et al (2002) Winter-annual grasses as a supplement for beef cows. J Anim Sci 80:1157–1165

    PubMed  CAS  Google Scholar 

  27. Reamer DC, Veillon CA (1983) Elimination of perchloric acid in digestion of biological fluids for fluorometric determination of selenium. Anal Chem 55:1605–1606

    Article  CAS  Google Scholar 

  28. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  29. Lawrence RA, Sunde RA, Schwartz GL et al (1974) Glutathione peroxidase activity in rat lens and other tissues in relation to dietary selenium intake. Exp Eye Res 18:563–569

    Article  PubMed  CAS  Google Scholar 

  30. Berrie RA, Hallford DM, Galyean ML (1995) Effects of zinc source and level on performance and metabolic hormone concentrations of growing and finishing lambs. Prof Anim Sci 11:149–156

    Google Scholar 

  31. Camacho LE, Benavidez JM, Hallford DM (2012) Serum hormone profiles, pregnancy rates, and offspring performance of Rambouillet ewes treated with recombinant bovine somatotropin before breeding. J Anim Sci 90:2826–2835

    Article  PubMed  CAS  Google Scholar 

  32. Richards JB, Hallford DM, Duff GC (1999) Serum luteinizing hormone, testosterone and thyroxine and growth responses of ram lambs fed locoweed (Oxytropis sericea) and treated with vitamin E/selenium. Theriogenology 52:1055–1066

    Article  PubMed  CAS  Google Scholar 

  33. Wells NH, Hallford DM, Hernandez JA (2003) Serum thyroid hormones and reproductive characteristics of Rambouillet ewe lambs treated with propylthiouracil before puberty. Theriogenology 59:1403–1413

    Article  PubMed  CAS  Google Scholar 

  34. Scholz H, Fleischer P (1996) Zdravotni poruchy skoru zpusobene nedostarkem selenu. In: Veterinarni pece v chovcch skotu-dodatck, Forum Veterinarium Brno, 1–4

  35. Wang Y, Fu L (2012) Forms of selenium affect its transfer, uptake and glutathione peroxidase activity in the Caco-2 cell model. Biol Trace Elem Res 149:110–116

    Article  PubMed  CAS  Google Scholar 

  36. Pilarczyk B, Jankowiak D, Tomza-Marciniak A, Pilarczyk R, Sablik P, Drozd R, Tylkowska A, Skolmowska M (2012) Selenium concentration and glutathione peroxidase (GSH-Px) activity in serum of cows a different stages of lactation. Biol Trace Elem Res 147:91–96

    Article  PubMed  CAS  Google Scholar 

  37. Grings EE, Roberts AJ, Geary TW, MacNeil MD (2008) Milk yield of primiparous beef cows from three calving systems and varied weaning ages. J Anim Sci 86:768–779

    Article  PubMed  CAS  Google Scholar 

  38. Levander OA (1987) A global view of human selenium nutrition. Annu Rev Nutr 7:227–250

    Article  PubMed  CAS  Google Scholar 

  39. Awadeh FT, Abelrahman MM, Kencaid RL, Finley JW (1998) Effect of selenium supplements on distribution of selenium among serum proteins in cattle. J Dairy Sci 81:1089–1094

    Article  PubMed  CAS  Google Scholar 

  40. Alfthan G, Aro A, Arvilommi H, Huttunen JK (1991) Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: effects of selenium yeast, selenite, and selenite. Am J Clin Nutr 53:120–125

    PubMed  CAS  Google Scholar 

  41. Erksine RJ (1993) Nutrition and mastitis. Food Anim Practice 9:551–561

    Google Scholar 

  42. Wullepit N, Raes K, Beerda B, Veerkamp RF, Fremaut D, De Smet S (2009) Influence of management and genetic merit for milk yield on the oxidative status of plasma in heifers. Livest Sci 123:276–282

    Article  Google Scholar 

  43. Adela P, Zinveliu D, Pop RA, Andrei S, Kiss E (2006) Antioxidant status in dairy cows during lactation. Bull USAMV-CN 63:130–135

    Google Scholar 

  44. Jankowiak D, Kruglak M, Dzienska M (2006) Changes in total lipid concentration and the selected fractions in the blood plasma of pregnant goats. Folia Univ Agric Stein Zootechnica 48:175–186

    Google Scholar 

  45. Barnabucci U, Ronchi B, Lacetera N, Nardone A (2005) Influence of body condition on relationships between metabolic status and oxidative stress in periparturient dairy cows. J Dairy Sci 88:2017–2026

    Article  Google Scholar 

  46. Ottaviano FG, Tang SS, Handy DE, Loscalzo J (2009) Regulation of the extracellular antioxidant selenoprotein plasma glutathione peroxidase (GPx-3) in mammalian cells. Mol Cell Biochem 327:111–126

    Article  PubMed  CAS  Google Scholar 

  47. Castillo C, Hernández J, Valverde I, Pereira V, Sotillo J, López Alonso M, Benedito JL (2006) Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res Vet Sci 80:133–139

    Article  PubMed  CAS  Google Scholar 

  48. Sharma N, Singh N, Singh O, Pandey V, Verma P (2011) Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Aust J Anim Sci 24:479–484

    Article  CAS  Google Scholar 

  49. Turk R, Juretic D, Geres D, Turk N, Rekic B, Simeon-Rudolf V, Svetina A (2004) Serum paraoxonase activity and lipid parameters in the early postpartum period of dairy cows. Res Vet Sci 76:57–61

    Article  PubMed  CAS  Google Scholar 

  50. Stewart WC, Bobe G, Vorachek WR, Pirelli GJ, Mosher WD, Nichols T, Van Saun RJ, Forsberg NE, Hall JA (2012) Organic and inorganic selenium: II. Transfer efficiency from ewes to lambs. J Anim Sci 90:577–584

    Article  PubMed  CAS  Google Scholar 

  51. Beckett GJ, Beddows SE, Morrice PC, Nicol F, Arthur JR (1987) Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats. Biochem J 248:443–447

    PubMed  CAS  Google Scholar 

  52. Arthur JR, Nicol F, Beckett GJ, Trayhurn P (1991) Impairment of iodothyronine 5′-deiodinase activity in brown adipose tissue and its acute stimulation by cold in selenium deficiency. Can J Physiol Pharma 69:782–785

    Article  CAS  Google Scholar 

  53. Bermano G, Nicol F, Dyer JA, Sunde RA, Beckett GJ, Arthur JR, Hesketh JE (1995) Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311:425–430

    PubMed  CAS  Google Scholar 

  54. Beech SG, Walker SW, Dorrance AM, Arthur JR, Nicol F, Lee D, Beckett GJ (1993) The role of thyroidal type-I iodothyronine deiodinase in tri-iodothyronine production by human and sheep thyrocytes in primary culture. J Endocrinol 136:361–370

    Article  PubMed  CAS  Google Scholar 

  55. Thorlacius-Ussing O, Flyvbjerg A, Ørskov H (1988) Growth in young rats after termination of sodium selenite exposure: studies of growth hormone and somatomedin C. Toxicol 48:167–176

    Article  CAS  Google Scholar 

  56. Salbe AD, Hill CH, Veillon C, Howe SM, Longnecker MP, Taylor PR, Levnander OA (1993) Relationship between serum somatomedin C levels and tissue selenium content among adults living in a seleniferous area. Nutr Res 13:399–405

    Article  Google Scholar 

  57. Meltzer HM, Haug E (1995) Oral intake of selenium has no effect on the serum concentrations of growth hormone, insulin-like growth factor-1, insulin-like growth factor-binding proteins 1 and 3 in healthy women. Eur J Clin Chem Clin Biochem 33:411–415

    PubMed  CAS  Google Scholar 

  58. Ward MA, Neville TL, Reed JJ, Taylor JB, Hallford DM, Soto-Navarro SA, Vonnahme KA, Redmer DA, Reynolds LP, Caton JS (2008) Effects of supply and dietary restriction on maternal and fetal metabolic hormones in pregnant ewe lambs. J Anim Sci 86:1254–1262

    Article  PubMed  CAS  Google Scholar 

  59. Moreno-Reyes R, Egrise D, Neve J, Pasteels J-L, Schoutens A (2001) Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Mineral Res 16:1556–1563

    Article  CAS  Google Scholar 

  60. Clemmons DR, Underwood LE (1991) Nutritional regulation of IGF-I and IGF binding proteins. Annu Rev Nutr 11:393–412

    Article  PubMed  CAS  Google Scholar 

  61. Scarth J (2006) Modulation of the growth hormone-insulin-like growth factor (GH-IGF) axis by pharmaceutical, nutraceutical and environmental xenobiotics: an emerging role for xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. A review. Xenobiotica 36:119–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was conducted in part with a gift from Alltech, Inc. (Nicholasville, KY USA). Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. Appreciation is expressed to the National Hormone and Peptide Program and Dr. Parlow for supplying reagents used in the IGF-1 radioimmunoassay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey A. Gunter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunter, S.A., Beck, P.A. & Hallford, D.M. Effects of Supplementary Selenium Source on the Blood Parameters in Beef Cows and Their Nursing Calves. Biol Trace Elem Res 152, 204–211 (2013). https://doi.org/10.1007/s12011-013-9620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9620-0

Keywords

Navigation