Skip to main content
Log in

Systemic Treatment with Vanadium Absorbed by Coprinus comatus Promotes Femoral Fracture Healing in Streptozotocin-Diabetic Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to analyze the impact of vanadium absorbed by Coprinus comatus (VACC) on fracture healing in streptozotocin-diabetic rats. Forty-five male Wistar rats used were divided into three groups: normal rats (control), diabetic rats, and diabetic rats treated with VACC. A standardized fracture-healing model with a stable plate fixation was established for the rat femoral fracture. After a 4-week stable fixation, callus quality was assessed by microcomputerized tomography and histological and biomechanical examinations. In addition, bone samples were obtained to evaluate the content of mineral substances in bones. Compared with the diabetic group, vanadium treatment significantly increased bone mineral content and biomechanical strength and improved microstructural properties of the callus. The ultimate load was increased by 29.1 % (P < 0.05), and the total bone volume of callus enhanced by 11.2 % (P < 0.05) at 4 weeks post fracture. Vanadium also promoted callus bone formation, which caused a 35.5 % increase in the total area of callus. However, VACC did not accelerate the fracture repair process in histological analysis. In conclusion, the current study suggests that systemic treatment with vanadium could promote fracture healing in streptozotocin-diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Funk JR, Hale JE, Carmines D et al (2000) Biomechanical evaluation of early fracture healing in normal and diabetic rats. J Orthop Res 18:126–132

    Article  PubMed  CAS  Google Scholar 

  2. Herbsman H, Powers JC, Hirschnian A, Shaftan GW (1968) Retardation of fracture healing in experimental diabetes. J Surg Res 8:424–431

    Article  PubMed  CAS  Google Scholar 

  3. Loder RT (1988) The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res 232:210–216

    Google Scholar 

  4. Macey LR, Kana SM, Jingushi S et al (1989) Defects of early fracture healing in experimental diabetes. J Bone Joint Surg Am 71:722–733

    PubMed  CAS  Google Scholar 

  5. Cozen L (1972) Does diabetes delay fracture healing? Clin Orthop 82:134–140

    PubMed  CAS  Google Scholar 

  6. Einhorn TA, Boskey AL, Gundberg CM, Vigorita VJ, Devlin VJ, Beyer MM (1988) The mineral and mechanical properties of bone in chronic experimental diabetes. J Orthop Res 6:317–323

    Article  PubMed  CAS  Google Scholar 

  7. Spanheimer RG (1992) Correlation between decreased collagen production in diabetic animals and in cells exposed to diabetic serum: response to insulin. Matrix 12:101–107

    Article  PubMed  CAS  Google Scholar 

  8. Topping RE, Bolander ME, Balian G (1994) Type X collagen in fracture callus and the effects of experimental diabetes. Clin Orthop 2:220–228

    Google Scholar 

  9. Thrailkill KM, Lumpkin CK Jr, Bunn RC et al (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 289:E735–E745

    Article  PubMed  CAS  Google Scholar 

  10. Beam HA, Parsons JR, Lin SS (2002) The effects of blood glucose control upon fracture healing in the BB Wistar rat with diabetes mellitus. J Orthop Res 20:1210–1216

    Article  PubMed  CAS  Google Scholar 

  11. Hough S, Avioli LV, Bergfeld MA, Fallon MD, Slatopolsky E, Teitelbaum SL (1981) Correction of abnormal bone and mineral metabolism in chronic streptozotocin-induced diabetes mellitus in the rat by insulin therapy. Endocrinology 108:2228–2234

    Article  PubMed  CAS  Google Scholar 

  12. Stuck WG (1932) The effect of insulin on the healing of experimental fractures in the rabbit. J Bone Joint Surg 14:109

    Google Scholar 

  13. Stunkle G, Wray JB (1965) The effect of exogenous insulin on fracture healing in the intact rat. Clin Orthop Relat Res 40:30–34

    Article  PubMed  CAS  Google Scholar 

  14. Paglia D, Wey A, Vaidya S et al (2011) The angiogenic effects of local ultralente insulin on periosteal bone formation. Orthopaedic Research Society, Long Beach

    Google Scholar 

  15. Domingo JL (2002) Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res 88:97–112

    Article  PubMed  CAS  Google Scholar 

  16. Scior T, Guevara-García A, Bernard P et al (2005) Are vanadium compounds drugable? Structures and effects of antidiabetic vanadium compounds: a critical review. Mini Rev Med Chem 5:995–1008

    Article  PubMed  CAS  Google Scholar 

  17. Zhaoji M, Qin F (2009) Comparison of hypoglycemic activity and toxicity of vanadium (IV) and vanadium (V) absorbed in fermented mushroom of Coprinus comatus. Biol Trace Elem Res 132(1–3):278–284

    Google Scholar 

  18. Pei Y, Fu Q (2011) The effects of vanadium (V) absorbed by Coprinus comatus on bone in streptozotocin-induced diabetic rats. Biol Trace Elem Res 142:748–759

    Article  PubMed  CAS  Google Scholar 

  19. Han C, Yuan J, Wang Y (2006) Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol 20(3):191–196

    Article  PubMed  CAS  Google Scholar 

  20. Wang JW, Xu SW, Yang DS, Lv RK (2007) Locally applied simvastatin promotes fracture healing in ovariectomized rat. Osteoporos Int 18:1641–1650

    Article  PubMed  Google Scholar 

  21. Rundle CH, Wang X, Wergedal JE, Subburaman Mohan K-H, Lau W (2008) Fracture healing in mice deficient in plasminogen activator inhibitor-1. Calcif Tissue Int 83:276–284

    Article  PubMed  CAS  Google Scholar 

  22. Bonnarens F, Einhorn TA (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2:97–101

    Article  PubMed  CAS  Google Scholar 

  23. Holstein JH, Matthys R, Histing T, Becker SC, Fiedler M, Garcia P, Meier C, Pohlemann T, Menger MD (2009) Development of a stable closed femoral fracture model in mice. J Surg Res 153:71–75

    Article  PubMed  Google Scholar 

  24. Claes L, Schmalenbach J, Herrmann M, lkü IÖ, Garcia P, Histing T, Obeid R, Schorr H, Herrmann W, Pohlemann T, Menger MD, Holstein JH (2009) Hyperhomocysteinemia is associated with impaired fracture healing in mice. Calcif Tissue Int 85:17–21

    Article  PubMed  CAS  Google Scholar 

  25. Habermann B, Kafchitsas K, Olender G, Augat P, Kurth A (2010) Strontium ranelate enhances callus strength more than PTH 1–34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86:82–89

    Article  PubMed  CAS  Google Scholar 

  26. Gerstenfeld LC, Sacks DJ, Pelis M, Mason ZD, Graves DT, Barrero M, Ominsky MS, Kostenuik PJ, Morgan EF, Einhorn TA (2009) Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 24:196–208

    Article  PubMed  CAS  Google Scholar 

  27. Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, Toben D, Jacobsen KA, Al-Sebaei MO, Song M, Trackman PC, Morgan EF, Gerstenfeld LC, Barnes GL (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 22:1903–1912

    Article  PubMed  CAS  Google Scholar 

  28. Bancroft JD (2002) Enzyme histochemistry and its diagnostic applications. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques. Harcourt, New York, pp 593–620

    Google Scholar 

  29. Goto A, Tsukamoto I (2003) Increase in tartrate-resistant acid phosphatase of bone at the early stage of ascorbic acid deficiency in the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat. Calcif Tissue Int 73:180–185

    Article  PubMed  CAS  Google Scholar 

  30. Gandhi A, Doumas C, O'Connor JP, Parsons JR, Lin SS (2006) The effects of local platelet rich plasma delivery on diabetic fracture healing. Bone 38:540–546

    Article  PubMed  CAS  Google Scholar 

  31. Meinel L, Zoidis E, Zapf J, Hassa P, Hottiger MO, Auer JA, Schneider R, Gander B, Luginbuehl V, Bettschart-Wolfisberger R, Illi OE, Merkle HP, von Rechenberg B (2003) Localized insulin-like growth factor I delivery to enhance new bone formation. Bone 33:660–672

    Article  PubMed  CAS  Google Scholar 

  32. Tolman EL, Barris E, Burns M, Pansini A, Partridge R (1979) Effects of vanadium on glucose metabolism in vitro. Life Sci 25:1159–1164

    Article  PubMed  CAS  Google Scholar 

  33. Shechter Y, Karlish SJ (1980) Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 284:556–558

    Article  PubMed  CAS  Google Scholar 

  34. Dubyak GR, Kleinzeller A (1980) The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as a (Na+−K+) ATPase inhibitor. J Biol Chem 255:5306–5312

    PubMed  CAS  Google Scholar 

  35. Degani H, Gochin M, Karlish SJ, Shechter Y (1981) Electron paramagnetic resonance studies and insulin-like effects of vanadium in rat adipocytes. Biochemistry 20:5795–5799

    Article  PubMed  CAS  Google Scholar 

  36. Green A (1986) The insulin-like effect of sodium vanadate on adipocyte glucose transport is mediated at a post-insulin-receptor level. Biochem J 238:663–669

    PubMed  CAS  Google Scholar 

  37. Tamura S, Brown TA, Whipple JH, Fujita-Yamaguchi Y, Dubler RE, Cheng K et al (1984) A novel mechanism for the insulin-like effect of vanadate on glycogen synthase in rat adipocytes. J Biol Chem 259:6650–6658

    PubMed  CAS  Google Scholar 

  38. Clark AS, Fagan JM, Mitch WE (1985) Selectivity of the insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem J 232:273–276

    PubMed  CAS  Google Scholar 

  39. Strout HV, Vicario PP, Saperstein R, Slater EE (1989) The insulin-mimetic effect of vanadate is not correlated with insulin receptor tyrosine kinase activity nor phosphorylation in mouse diaphragm in vivo. Endocrinology 124:1918–1924

    Article  PubMed  CAS  Google Scholar 

  40. Fantus IG, Kadota S, Deragon G, Foster B, Posner BI (1989) Pervanadate [peroxide (s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 28:8864–8871

    Article  PubMed  CAS  Google Scholar 

  41. Shisheva A, Shechter Y (1992) Quercetin selectively inhibits insulin receptor function in vitro and the bioresponses of insulin and insulinomimetic agents in rat adipocytes. Biochemistry 31:8059–8063

    Article  PubMed  CAS  Google Scholar 

  42. Pei Y, Fu Q (2010) Yeast-incorporated gallium promotes fracture healing by increasing callus bony area and improving trabecular microstructure on ovariectomized osteopenic rats. Biol Trace Elem Res 141(1–3):207–215

    PubMed  Google Scholar 

  43. Facchini DM, Yuen VG, Battell ML, McNeill JH, Grynpas MD (2006) The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone 38:368–377

    Article  PubMed  CAS  Google Scholar 

  44. Schmidmaier G, Wildemann B, Melis B, Krummrey G, Einhorn A, Haas N, Raschke M (2004) Development and characterization of a standard closed tibial fracture model in the rat. Eur J Trauma 30:35–42

    Article  Google Scholar 

  45. Hadjiargyrou M, Lambardo F, Zhao S, Ahrens W, Joo J, Ahn H, Jurman M, White DW, Rubin CT (2002) Transcriptional profiling of bone regeneration: insight into the molecular complexity of wound repair. J Biol Chem 277:30177–30182

    Article  PubMed  CAS  Google Scholar 

  46. Pothuaud L, Rietbergen BV, Mosekilde L et al (2002) Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone. Bone 35:1091–1099

    Google Scholar 

  47. Link TM (2001) Changes in trabecular bone structure assessed by high-resolution MRI in patients after transplantation. Adv Exp Med Biol 496:31–36

    Article  PubMed  CAS  Google Scholar 

  48. Link T, Majumdar S, Augat P, Lin J, Newitt D, Lu Y, Lane N, Genant H (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    Article  PubMed  CAS  Google Scholar 

  49. Link T, Saborowski S, Kisters K, Kempkes M, Kosch M, Newitt D, Lu Y, Waldt S, Majumdar S (2002) Changes in calcaneal trabecular bone structure assessed with high resolution MRI in patients with kidney transplantation. Osteoporos Int 2002:119–129

    Article  Google Scholar 

  50. Shyng YC, Devlin H, Sloan P (2001) The effect of streptozotocin-induced experimental diabetes mellitus on calvarial defect healing and bone turnover in the rat. Int J Oral Maxillofac Surg 30:70–74

    Article  PubMed  CAS  Google Scholar 

  51. Shires R, Teitelbaum SL, Bergfeld MA, Fallen MD, Slatopolsky E et al (1981) The effect of streptozotocin-induced chronic diabetes mellitus on bone mineral homeostasis in the rat. J Lab Clin Med 97:231–240

    PubMed  CAS  Google Scholar 

  52. Bain S, Ramamurthy NS, Impeduglia T, Scolman S, Golub LM (1997) Tetracycline prevents cancellous bone loss and maintains near-normal rates of bone formation in streptozotocin diabetic rats. Bone 21:147–153

    Article  PubMed  CAS  Google Scholar 

  53. Barrio DA, Braziunas MD, Etcheverry SB, Cortizo AM (1997) Maltol complexes of vanadium (IV) and (V) regulate in vitro alkaline phosphatase activity and osteoblast-like cell growth. J Trace Elem Med Biol 11:110–115

    Article  PubMed  CAS  Google Scholar 

  54. Etcheverry SB, Crans DC, Keramidas AD, Cortizo AM (1997) Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture. Arch Biochem Biophys 338:7–14

    Article  PubMed  CAS  Google Scholar 

  55. Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD (1996) Insulin receptor expression in bone. J Bone Miner Res 11:1312–1320

    Article  PubMed  CAS  Google Scholar 

  56. Cornish J, Callon KE, Reid IR (1996) Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 59:492–495

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China. Fund number: 81070688/H0726. We would like to thank Central Laboratory, Shengjing Hospital of China Medical University for providing the necessary facilities and equipments to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Wang, J., Fu, Y. et al. Systemic Treatment with Vanadium Absorbed by Coprinus comatus Promotes Femoral Fracture Healing in Streptozotocin-Diabetic Rats. Biol Trace Elem Res 151, 424–433 (2013). https://doi.org/10.1007/s12011-012-9584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9584-5

Keywords

Navigation