Skip to main content
Log in

The Protective Effects of Riluzole on Manganese-Induced Disruption of Glutamate Transporters and Glutamine Synthetase in the Cultured Astrocytes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chronic exposure to excessive manganese (Mn) can lead to manganism, a type of neurotoxicity accomplished with extracellular glutamate (Glu) accumulation. To investigate this accumulation, this study focused on the role of astrocyte glutamate transporters (GluTs) and glutamine synthetase (GS), which have roles in Glu transport and metabolism, respectively. And the possible protective effects of riluzole (a glutamatergic modulator) were studied in relation to Mn exposure. At first, the astrocytes were exposed to 0, 125, 250, and 500 μM MnCl2 for 24 h, and 100 μM riluzole was pretreated to astrocytes for 6 h before 500 μM MnCl2 exposure. Then, [3H]-glutamate uptake was measured by liquid scintillation counting; Na+-K+ ATPase and GS activities were determined by a colorimetric method; glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), and GS mRNA expression were determined by RT-PCR and protein levels were measured by western blotting. The results showed that Mn inhibited Glu uptake, Na+-K+ ATPase and GS activities, GLAST, GLT-1, and GS mRNA, and protein in a concentration-dependent manner. And they were significantly higher for astrocytes pretreated with 100 μM riluzole than the group exposed to 500 μM MnCl2. The results suggested that Mn disrupted Glu transport and metabolism by inhibiting GluTs and GS. Riluzole activated protective effects on enhancing GluTs and GS to reverse Glu accumulation. In conclusion, Mn exposure results in the disruption of GLAST, GLT-1, and GS expression and function. Furthermore, riluzole attenuates this Mn toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mirhashemi SM, Shahabaddin ME (2011) Evaluation of aluminium, manganese, copper and selenium effects on human islets amyloid polypeptide hormone aggregation. Pak J Biol Sci 14:288–292

    Article  PubMed  CAS  Google Scholar 

  2. Myers JE, Thompson ML, Ramushu S et al (2003) The nervous system effects of occupational exposure on workers in a South African manganese smelter. Neurotoxicology 24:885–894

    Article  PubMed  CAS  Google Scholar 

  3. ATSDR (Agency for Toxic Substances and Disease Registry) (2008) Toxicological profile for manganese. U.S. Department of Health And Human Services Public Health Service. Available at http://www.atsdr.cdc.gov/ToxProfiles/tp151.pdf

  4. Montes S, Alcaraz-Zubeldia M, Muriel P et al (2001) Striatal manganese accumulation induces changes in dopamine metabolism in the cirrhotic rat. Brain Res 891:123–129

    Article  PubMed  CAS  Google Scholar 

  5. Greenwood SM, Connolly CN (2007) Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology 53:891–898

    Article  PubMed  CAS  Google Scholar 

  6. Fitsanakis VA, Aschner M (2005) The importance of glutamate, glycine, and gamma-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity. Toxicol Appl Pharmacol 204:343–354

    Article  PubMed  CAS  Google Scholar 

  7. Aschner M, Gannon M, Kimelberg HK (1992) Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 58(2):730–735

    Article  PubMed  CAS  Google Scholar 

  8. Hazell AS, Norenberg MD (1997) Manganese decreases glutamate uptake in cultured astrocytes. Neurochem Res 22:1443–1447

    Article  PubMed  CAS  Google Scholar 

  9. Erikson K, Aschner M (2002) Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology 23:595–602

    Article  PubMed  CAS  Google Scholar 

  10. Lee ES, Sidoryk M, Jiang H et al (2009) Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 110:530–544

    Article  PubMed  CAS  Google Scholar 

  11. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  PubMed  CAS  Google Scholar 

  12. Rose EM, Koo JC, Antflick JE et al (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29:8143–8155

    Article  PubMed  CAS  Google Scholar 

  13. Suárez I, Bodega G, Fernández B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41:123–142

    Article  PubMed  Google Scholar 

  14. Hockly E, Tse J, Barker AL et al (2006) Evaluation of the benzothiazole aggregation inhibitors riluzole and PGL-135 as therapeutics for Huntington’s disease. Neurobiol Dis 21:228–236

    Article  PubMed  CAS  Google Scholar 

  15. Boireau A, Dubedat P, Bordier F et al (2000) The protective effect of riluzole in the MPTP model of Parkinson’s disease in mice is not due to a decrease in MPP(+) accumulation. Neuropharmacology 39:1016–1020

    Article  PubMed  CAS  Google Scholar 

  16. Wahl F, Allix M, Plotkine M et al (1993) Effect of riluzole on focal cerebral ischemia in rats. Eur J Pharmacol 230:209–214

    Article  PubMed  CAS  Google Scholar 

  17. Wang SJ, Wang KY, Wang WC (2004) Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Neuroscience 125:191–201

    Article  PubMed  CAS  Google Scholar 

  18. De Sarro G, Siniscalchi A, Ferreri G et al (2000) NMDA and AMPA/kainate receptors are involved in the anticonvulsant activity of riluzole in DBA/2 mice. Eur J Pharmacol 408:25–34

    Article  PubMed  Google Scholar 

  19. Zona C, Siniscalchi A, Mercuri NB et al (1998) Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neuroscience 85:931–938

    Article  PubMed  CAS  Google Scholar 

  20. Noh KM, Hwang JY, Shin HC et al (2000) A novel neuroprotective mechanism of riluzole: direct inhibition of protein kinase C. Neurobiol Dis 7:375–383

    Article  PubMed  CAS  Google Scholar 

  21. Dagci T, Yilmaz O, Taskiran et al (2007) Neuroprotective agents: is effective on toxicity in glial cells? Cell Mol Neurobiol 27:171–177

    Article  PubMed  CAS  Google Scholar 

  22. Frizzo ME, Dall’Onder LP, Dalcin KB et al (2004) Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol Neurobiol 24:123–128

    Article  PubMed  CAS  Google Scholar 

  23. Fumagalli E, Funicello M, Rauen T et al (2008) Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol 578:171–176

    Article  PubMed  CAS  Google Scholar 

  24. Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  PubMed  CAS  Google Scholar 

  25. Mutkus L, Aschner JL, Syversen T et al (2000) In vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells is inhibited by the ethylmercury-containing preservative thimerosal. Biol Trace Elem Res 105:71–86

    Article  Google Scholar 

  26. Renis M, Cardile V, Russo A et al (1998) Glutamine synthetase activity and HSP70 levels in cultured rat astrocytes: effect of 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine. Brain Res 783:143–150

    Article  PubMed  CAS  Google Scholar 

  27. Rauen T, Wiessner M (2000) Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS. Neurochem Int 37:179–189

    Article  PubMed  CAS  Google Scholar 

  28. Kong SE, Hall JC, Cooper D et al (2000) Starvation alters the activity and mRNA level of glutaminase and glutamine synthetase in the rat intestine. J Nutr Biochem 11:393–400

    Article  PubMed  CAS  Google Scholar 

  29. Camacho A, Massieu L (2006) Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res 37:11–18

    Article  PubMed  CAS  Google Scholar 

  30. Boireau A, Meunier M, Imperato A (1998) Ouabain-induced increase in dopamine release from mouse striatal slices is antagonized by riluzole. J Pharm Pharmacol 50:1293–1297

    Article  PubMed  CAS  Google Scholar 

  31. Erikson KM, Suber RL, Aschner M (2002) Glutamate/aspartate transporter (GLAST), taurine transporter and metallothionein mRNA levels are differentially altered in astrocytes exposed to manganese chloride, manganese phosphate or manganese sulfate. Neurotoxicology 23:281–288

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka K, Watase K, Manabe T (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  PubMed  CAS  Google Scholar 

  33. Erikson KM, Dorman DC, Lash LH (2007) Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicol Sci 97:459–466

    Article  PubMed  CAS  Google Scholar 

  34. Erikson KM, Dorman DC, Lash LH (2008) Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Neurotoxicology 29:377–385

    Article  PubMed  CAS  Google Scholar 

  35. Deng Y, Xu Z, Xu B (2009) The protective effect of riluzole on manganese caused disruption of glutamate-glutamine cycle in rats. Brain Res 1289:106–117

    Article  PubMed  CAS  Google Scholar 

  36. Erikson KM, Dorman DC, Fitsanakis V (2006) Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 111:199–215

    Article  PubMed  CAS  Google Scholar 

  37. Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Ann N Y Acad Sci 1012:115–128

    Article  PubMed  CAS  Google Scholar 

  38. Mu X, Azbill RD, Springer JE (2000) Riluzole improves measures of oxidative stress following traumatic spinal cord injury. Brain Res 870:66–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (no. 30771834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofa Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Xu, Z., Xu, B. et al. The Protective Effects of Riluzole on Manganese-Induced Disruption of Glutamate Transporters and Glutamine Synthetase in the Cultured Astrocytes. Biol Trace Elem Res 148, 242–249 (2012). https://doi.org/10.1007/s12011-012-9365-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9365-1

Keywords

Navigation