Skip to main content
Log in

The Effect of Age and Gender on 59 Trace-Element Contents in Human Rib Bone Investigated by Inductively Coupled Plasma Mass Spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of age and gender on 59 trace-element contents in rib bone of 80 apparently healthy 15–55-year-old women (n = 38) and men (n = 42) was investigated by inductively coupled plasma mass spectrometry. Mean values (M ± SΕΜ) for the mass fraction (milligrams per kilogram, on dry-weight basis) of Ba, Bi, Cd, Ce, Cu, Dy, Er, Gd, La, Li, Mn, Mo, Nd, Pb, Pr, Rb, Sm, Sr, Tb, Tl, U, Yb, and Zn for both female and male taken together were: Ba 2.5 ± 0.2, Bi 0.015 ± 0.002, Cd 0.044 ± 0.005, Ce 0.029 ± 0.002, Cu 1.05 ± 0.06, Dy 0.0020 ± 0.0003, Er 0.0011 ± 0.0002, Gd 0.0015 ± 0.0001, La 0.020 ± 0.002, Li 0.040 ± 0.002, Mn 0.354 ± 0.004, Mo 0.052 ± 0.006, Nd 0.011 ± 0.001, Pb 2.24 ± 0.14, Pr 0.0032 ± 0.0004, Rb 1.51 ± 0.06, Sm 0.0014 ± 0.0001, Sr 291 ± 20, Tb 0.00041 ± 0.00005, Tl 0.00050 ± 0.00003, U 0.0013 ± 0.0001, Yb 0.00072 ± 0.00007, and Zn 92.8 ± 1.5, respectively. The upper limit of mean contents of Ag, Al, B, Be, Br, Cr, Cs, Hg, Ho, Lu, Ni, Sb, Te, Th, Ti, Tm, and Y were: Ag ≤ 0.011, Al ≤ 7.2, B ≤ 0.65, Be ≤ 0.0032, Br ≤ 3.9, Cr ≤ 0.25, Cs ≤ 0.0077, Hg ≤ 0.018, Ho ≤ 0.00053, Lu ≤ 0.00024, Ni ≤ 1.05, Sb ≤ 0.0096, Te ≤ 0.0057, Th ≤ 0.0030, Ti ≤ 2.8, Tm ≤ 0.00006, and Y ≤ 0.0047, respectively. In all bone samples, the contents of As, Au, Co, Eu, Ga, Hf, Ir, Nb, Pd, Pt, Re, Rh, Sc, Se, Sn, Ta, V, W, and Zr were under detection limits. The Ce, Dy, Er, Gd, La, Nd, Pr, Sm, Tb, and Yb contents increase with age. Higher Sr mass fraction is typical of female rib as compared to those in male bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nevitt MC (1994) Epidemiology of osteoporosis. Rheum Dis Clin North Am 20:535–559

    PubMed  CAS  Google Scholar 

  2. Orwoll ES, Bliziotes M (1994) Heterogeneity in osteoporosis. Men versus women. Rheum Dis Clin North Am 20:671–689

    PubMed  CAS  Google Scholar 

  3. Melton LJ, Atkinson EJ, O'Connor MK, O'Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13:1915–1923

    Article  PubMed  Google Scholar 

  4. Cooper C, Atkinson EJ, Jacobsen SJ, O'Fallon WM, Melton LJ (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137:1001–1005

    PubMed  CAS  Google Scholar 

  5. Riggs BL, Melton LJ (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17:505S–511S

    Article  PubMed  CAS  Google Scholar 

  6. Melton LJ (1993) Hip fractures: a worldwide problem today and tomorrow. Bone 14(suppl 1):S1–S8

    Article  PubMed  Google Scholar 

  7. Lentle B, Worsley D (2006) Osteoporosis redux. J Nucl Med 47:1945–1959

    PubMed  Google Scholar 

  8. Rapp K, Becker C, Lamb SE, Icks A, Klenk J (2008) Hip fractures in institutionalized elderly people: incidence rates and excess mortality. J Bone Miner Res 23:1825–1831

    Article  PubMed  Google Scholar 

  9. Beattie JH, Avenell A (1992) Trace element nutrition and bone metabolism. Nutr Res Rev 5:167–188

    Article  PubMed  CAS  Google Scholar 

  10. Triffitt JT (1985) Receptor molecules, coprecipitation and ion exchange processes in the deposition of metal ions in bone. In: Priest ND (ed) Metals in bone. MTP Press, Lancaster, pp 3–20

    Google Scholar 

  11. Saltman S, Strause L (1993) The role of trace elements in osteoporosis. J Am Coll Nutr 12:384–389

    PubMed  CAS  Google Scholar 

  12. Bowen HJM, Gibbons D (1963) Radioactivation analysis. The Clarendon Press, Oxford

    Google Scholar 

  13. Bowen HJM (1979) Environmental chemistry of the elements. Academic, London

    Google Scholar 

  14. Zwanziger H (1989) The multielemental analysis of bone: a review. Biol Trace Elem Res 19:195–232

    Article  PubMed  CAS  Google Scholar 

  15. Iyengar GV, Kollmer WE, Bowen HJM (1978) The elemental composition of human tissues and body fluids. A compilation of values for adults. Verlag Chemie, Weinheim

    Google Scholar 

  16. Iyengar GV, Tandon L (1999) Minor and trace elements in human bones and teeth. IAEA (NAHRES-39), Vienna

    Google Scholar 

  17. Grynpas MD, Pritzker KPH, Hancock RGV (1987) Neutron activation analysis of bulk and selected trace elements in bone using low flux SLOWPOKE reactor. Biol Trace Elem Res 13:333–344

    Article  CAS  Google Scholar 

  18. Zaichick V (1997) Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health In: Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques. IAEA, Vienna, pp 123–133

  19. Zaichick V (2004) Losses of chemical elements in biological samples under the dry aching process. Trace Elem Med 5:17–22

    Google Scholar 

  20. Zaichick V, Zaichick S, Karandashev V, Nosenko S (2009) The effect of age and gender on Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Sr, V, and Zn contents in rib bone of healthy humans. Biol Trace Elem Res 129:107–115

    Article  PubMed  CAS  Google Scholar 

  21. Zaichick V, Zaichick S (2009) Instrumental neutron activation analysis of trace element contents in the rib bone of healthy men. J Radioanal Nucl Chem 281:47–52

    Article  CAS  Google Scholar 

  22. Hamilton EI (1979) The chemical elements and man. Charles C Thomas Publisher, Springfield

    Google Scholar 

  23. Kehoe RA, Cholak J, Story RV (1940) A spectrochemical study of the normal ranges of concentrations of certain trace metals in biological materials. J Nutr 19:579–588

    CAS  Google Scholar 

  24. Yoshinaga J, Suzuki T, Morita M (1989) Sex- and age-related variation in elemental concentrations of contemporary Japanese ribs. Sci Total Environ 79:209–221

    Article  PubMed  CAS  Google Scholar 

  25. Nusbaum RE, Butt EM, Gilmour TC, DiDio SL (1965) Relation of air pollution to trace metals in bone. Arch Environ Health 10:227–232

    PubMed  CAS  Google Scholar 

  26. Yoshinaga J, Suzuki T, Morita M, Hayakawa M (1995) Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases. Sci Total Environ 162:239–252

    Article  PubMed  CAS  Google Scholar 

  27. Schroeder HA, Tipton IH, Nason AP (1972) Trace metals in man: strontium and barium. J Chron Dis 25:491–517

    Article  PubMed  CAS  Google Scholar 

  28. Samudralwar DL, Robertson JD (1993) Determination of major and trace elements in bones by simultaneous PIXE/PIGE analysis. J Radioanal Nucl Chem, Articles 169:259–267

    Article  CAS  Google Scholar 

  29. Saiki S, Takata MK, Kramarski S, Borelli A (1999) Instrumental neutron activation analysis of rib bone samples and of bone reference materials. Biol Trace Elem Res 71–72:41–46

    Article  PubMed  Google Scholar 

  30. Forssen A (1972) Inorganic elements in the human body. Ann Med Exp Biol Fenn 50:99–162

    PubMed  CAS  Google Scholar 

  31. Brättter P, Gawlik D, Lausch J, Rosick U (1977) On the distribution of the trace elements in human skeletons. J Radioanal Chem 37:393–403

    Article  Google Scholar 

  32. Sumino K, Hayakawa K, Shibata T, Kitamura S (1975) Heavy metals in normal Japanese tissues. Arch Environ Health 30:487–494

    PubMed  CAS  Google Scholar 

  33. Anke M, Schneider H-J, Grun M, Groppel B, Hennig A (1978) Die Diagnose des Mangan-, Zink- und Kupfermangels und der Kadmiumbelastung. Zbl Pharm 117:688–705

    CAS  Google Scholar 

  34. Crawford MD, Crawford T (1969) Lead content of bones in a soft and hard water area. Lancet 7597:699–701

    Article  Google Scholar 

  35. Yamagata N, Murata S, Torii T (1962) The cobalt content of human body. J Radiat Res 3:4–8

    Article  PubMed  CAS  Google Scholar 

  36. Hamilton EI, Minski MJ, Cleary JJ (1972/73) The concentration and distribution of some stable elements in healthy human tissues from the United Kingdom. Sci Total Environ 1:341–374

    Google Scholar 

  37. Koch HJ, Smith ER, Shimp NF, Connor J (1956) Analysis of trace elements in human tissue. I. Normal tissues. Cancer 9:499–511

    Article  PubMed  CAS  Google Scholar 

  38. Nozaki T, Schikawa M, Sasuga T, Inarida M (1970) Neutron activation analysis of uranium in human bone, drinking water and daily diet. J Radioanal Chem 6:33–40

    Article  CAS  Google Scholar 

  39. Byrne AR, Kosta L (1978) Vanadium in foods and in human body fluids and tissues. Sci Total Environ 10:17–30

    Article  PubMed  CAS  Google Scholar 

  40. Koch HJ, Smith ER, McNeely J (1957) Analysis of trace elements in human tissues. II. The lymphomatous disease. Cancer 10:151–160

    Article  PubMed  CAS  Google Scholar 

  41. Takata MK, Saiki M, Sumita NM, Saldova PHN, Pasqualucci CA (2005) Trace element determinations in human cortical and trabecular bones. J Radioanal Nucl Chem 264:5–8

    Article  CAS  Google Scholar 

  42. Zaichick V, Dyatlov A, Zaichick S (2000) INAA application in the age dynamics assessment of maijor, minor, and trace elements in the human rib. J Radioanal Nucl Chem 244:189–193

    Article  CAS  Google Scholar 

  43. Tzaphlidou M, Zaichick V (2003) Calcium, phosphorus, calcium-phosphorus ratio in rib bone of healthy humans. Biol Trace Elem Res 93:63–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Sergey Moiseev (Forensic Medicine Department of Obninsk City Hospital) for supplying rib samples. The authors acknowledge the support of the ICP-MS determination in the framewok of the RAS Presidium program for basic research №20 “Creation and improvement of metods of chemical analysis and investigation of substances and materials structure”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Zaichick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaichick, S., Zaichick, V., Karandashev, V.K. et al. The Effect of Age and Gender on 59 Trace-Element Contents in Human Rib Bone Investigated by Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 143, 41–57 (2011). https://doi.org/10.1007/s12011-010-8837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8837-4

Keywords

Navigation