Skip to main content
Log in

Plasma Zinc, Copper, and Serum Thyroid Hormones and Insulin Levels After Zinc Supplementation Followed by Placebo in Competitive Athletes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Intense physical activity is associated with biological adaptations involving hormones and trace elements. Zinc supplementation may affect plasma copper concentration, thyroid-stimulating hormone (TSH), thyroid hormones, insulin, and glucose homeostasis, but data in athletes are scarce. The aim of this study was to evaluate in competitive athletes (cyclists, n = 7, 32 ± 8 years) the effect of zinc supplementation (22 mg/day as zinc gluconate) during 30 days, and discontinuation using placebo (maltodextrin) during the following 30 days, on plasma zinc and copper concentrations, serum thyroid hormones, insulin and glucose levels, and HOMA2-IR. Compared to baseline, plasma zinc and Zn:Cu plasma ratio increased, but plasma copper decreased after zinc supplementation (day 30) and discontinuation (day 60) (p < 0.05). Zn supplementation and discontinuation had no effect on TSH, T3, and T4. Fasting serum insulin and HOMA2-IR increased (27% and 47%, respectively) on day 60 compared to baseline (p = 0.03), suggesting a delayed effect of zinc supplementation. Moreover, plasma zinc was positively associated with serum insulin (r = 0.87, p = 0.009) and HOMA2-IR (r = 0.81, p = 0.03) after zinc supplementation (day 30), indicating that supplemental zinc may impair glucose utilization in cyclists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dibley MJ (2001) Zinc. In: Bowman BA, Russel RM (eds) Present knowledge in nutrition. ILSI, Washington (DC), pp 329–343

    Google Scholar 

  2. Danforth E Jr, Burger AG (1989) The impact of nutrition on thyroid hormone physiology and action. Ann Rev Nutr 9:201–227

    Article  CAS  Google Scholar 

  3. Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115

    PubMed  CAS  Google Scholar 

  4. Maret W, Sandstead HH (2006) Zinc requeriments and the risk as and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18

    Article  PubMed  CAS  Google Scholar 

  5. Maxwell C, Volpe SL (2007) Effect of zinc supplementation on thyroid hormone function. Ann Nutr Metab 51:188–194

    Article  PubMed  CAS  Google Scholar 

  6. Sonksen PH (2001) Hormones and sport: insulin, growth and sport. J Endocrinol 170:13–25

    Article  PubMed  CAS  Google Scholar 

  7. Lukaski HC, Siders WA, Hoverson BS et al (1996) Iron, copper, magnesium and zinc status as predictors of swimming performance. J Sports Med 17:535–540

    Article  CAS  Google Scholar 

  8. Koury JC, Oliveira AV, Portella ES et al (2004) Zinc and copper biochemical indices of antioxidant status in elite athletes of different modalities. Int J Sport Nutr Exerc Metabol 14:358–372

    CAS  Google Scholar 

  9. Ciloglu F, Perker I, Pehlivan et al (2005) Exercise intensity and its effects on thyroid hormones. Neuroendocrinol Lett 26:830–834

    PubMed  CAS  Google Scholar 

  10. Lohman TG, Roche A, Martorell R (1998) Anthropometric standardization reference manual. Human Kinetics, Champaign

    Google Scholar 

  11. Jackson AS, Pollock ML (1978) Generalized equations for predict body density of men. Br J Nutr 40:497–504

    Article  PubMed  CAS  Google Scholar 

  12. Cordova A, Navas FJ (1998) Effect of training on zinc metabolism: changes in serum and sweat zinc concentrations in sports men. Ann Nutr Metab 42:247–282

    Google Scholar 

  13. Donangelo CM, Woodhousse LR, King SM, Viteri FE, King JC (2002) J Nutr 132:1860–1864

    PubMed  CAS  Google Scholar 

  14. The Oxford Center for Diabetes. Endocrinology & Metabolism, Diabetes Trial Unit. HOMA Calculator. Available from:http://WWW.dtu.ox.ac.uk/ Accessed April 2009.

  15. Gelonezi B, Vasques ACJ, Stabe CCF et al (2009) HOMA-1 IR and HOMA2-IR indexes in identifying resistance and metabolic syndrome –Brazilian Metabolic Syndrome Study (BRAMS). Arq Bras Endocrinol Metabol 53:281–287

    Article  Google Scholar 

  16. World Health Organization (2000) Obesity: preventing and managing the global epidemic. Report of a WHO Consultation. Geneva: World Health Organization

  17. Food and Nutrition Board (2001) Dietary reference intakes for vitamin A; vitamin K; boron; chromium; copper; iodine; iron; manganese; molybdenum; nickel; silicon; vanadium and zinc. National Academic, Washington (DC)

    Google Scholar 

  18. Lucia A, Pardo J, Durantez A et al (1998) Physiological differences between professional and elite road cyclists. Int J Sports Med 19:342–348

    Article  PubMed  CAS  Google Scholar 

  19. Faria EW, Parker DL, Faria IE (2005) The science of cycling: physiology and training - part 1. Sports Med 35:285–312

    Article  PubMed  Google Scholar 

  20. Volpe SL, Lowe NM, Woodhouse LR, King JC (2007) Effect of maximal exercise on the short-term zinc kinetics of zinc metabolism in sedentary males. Brit J Sports Med 41:156–161

    Article  Google Scholar 

  21. Kara E, Gunay M, Cicioglu I et al (2010) Effect of zinc supplementation on antioxidant activity in young wrestlers. Biol Trace Elem Res 134:55–63

    Article  PubMed  CAS  Google Scholar 

  22. Oliveira KJF, Donangelo CM, Jr O et al (2009) Effect of zinc supplementation on the antioxidant, copper, and iron status of physically active adolescents. Cell Biochem Funct 27:162–166

    Article  PubMed  Google Scholar 

  23. Khaled S, Brun JF, Cassanas G, Bardet L et al (1999) Effects of zinc supplementation on blood rheology during exercise. Clin Hemorheol Microcirc 20:1–10

    PubMed  CAS  Google Scholar 

  24. Wilborn CD, Kerksick CM, Campbell BI (2004) Effects of zinc magnesium aspartate (ZMA) supplementation on training adaptations and makers of anabolism and catabolism. J Int Soc Sports Nutr 31:12–20

    Article  Google Scholar 

  25. Singh RB, Mohammad A, Niaz MA et al (1998) Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr 17:564–570

    PubMed  CAS  Google Scholar 

  26. Dressendorfer RH, Petersen SR, Lovshin SE (2002) Mineral metabolism in male cyclists during high-intensity endurance training. Int J Sport Nutr Exerc Metab 12:63–72

    PubMed  CAS  Google Scholar 

  27. Lukaski H (2005) Low dietary zinc decreases erythrocyte carbonic anhydrase activities and impairs cardiorespiratory function in men during exercise. Am J Clin Nutr 81:1045–1051

    PubMed  CAS  Google Scholar 

  28. Yadrick MK, Kenney MA, Winterfeldt EA (1989) Iron and zinc status: response to supplementation with zinc and iron in adult females. Am J Clin Nutr 49:145–150

    PubMed  CAS  Google Scholar 

  29. Sandstrom B (2001) Micronutrient interactions:effect on absorption and biovailability. Br J Nutr 85:S181–S185

    Article  PubMed  CAS  Google Scholar 

  30. Solomons NW, Ruz M (1997) Zinc and iron interaction: concepts and perspectives in the developing world. Nutr Res 17:177–185

    Article  Google Scholar 

  31. Kaji M (2001) Zinc in endocrinology. Int Pediatr 16:1–7

    Google Scholar 

  32. Kralik A, Eder K, Kirchgessener M (1996) Influence of zinc and selenium deficiency on parameters relating to thyroid hormone metabolism. Horm Metab Res 28:223–226

    Article  PubMed  CAS  Google Scholar 

  33. Song YJ, Wang XK, Li Y et al (2005) Zinc and the diabetic heart. Biometals 18:325–332

    Article  PubMed  CAS  Google Scholar 

  34. Partida-Hernández G, Arreola F, Fenton B et al (2006) Effect of zinc replacement on lipids and lipoproteins in type 2-diabetic patients. Biomed Pharmacother 60:161–168

    Article  PubMed  Google Scholar 

  35. Kilic M, Baltaci AK, Gunay M, Gökbel H, Okudan N, Cicioglu I (2006) The effect of exhaustion exercise on thyroid hormones and testosterone levels of elite athletes receiving oral zinc. Neuro Endocrinol Lett 27:247–252

    PubMed  CAS  Google Scholar 

  36. Hashemipour M, Kelishadi R, Shapouri J et al (2009) Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones 8:279–285

    PubMed  Google Scholar 

  37. Jansen J, Karges W, Rink L (2009) Zinc and diabetes-clinical links and molecular mechanisms. J Nutr Biochem 20:399–417

    Article  PubMed  CAS  Google Scholar 

  38. Bajpeyi S, Tanner CJ, Slentz CA (2009) Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation. J Appl Physiol 106:1079–1085

    Article  PubMed  CAS  Google Scholar 

  39. Wallace IM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diab Care 2:148–195

    Google Scholar 

  40. Shih-Wei C, Cheng-Hsiu L, Tung-Hsing H et al (2005) Characteristics of glycemic control in elite power and endurance athletes. Prev Med 40:564–569

    Article  Google Scholar 

  41. Yi-Liang C, Chih-Yang H, Shin-Da L et al (2009) Discipline-specific insulin sensitivity in athletes. Nutrition 25:1137–1142

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPERJ and CNPq (Brazil). We also thank all the dedicated subjects who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josely Correa Koury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, L.F.J.C., Donangelo, C.M., Franco, J.G. et al. Plasma Zinc, Copper, and Serum Thyroid Hormones and Insulin Levels After Zinc Supplementation Followed by Placebo in Competitive Athletes. Biol Trace Elem Res 142, 415–423 (2011). https://doi.org/10.1007/s12011-010-8821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8821-z

Keywords

Navigation