Skip to main content

Advertisement

Log in

Association of Environmental Toxic Elements in Biological Samples of Myocardial Infarction Patients at Different Stages

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 20 January 2011

An Erratum to this article was published on 20 January 2011

Abstract

The exposure of toxic elements may directly or indirectly associate with different pathogenesis of heart diseases. In the present study, the association of arsenic (As), cadmium (Cd), cobalt (Co), lead (Pb), and nickel (Ni) in biological samples (whole blood and urine) and mortality from myocardial infarction (MI) patients at first, second, and third heart attacks was carried out. Both biological samples of 130 MI patients (77 male and 53 female), with ages ranging from 45 to 60 years, and 61 healthy persons (33 male and 28 female) of the same age group were collected. The elements in biological samples were assessed by electrothermal atomic absorption spectrophotometer, prior to microwave-assisted acid digestion. The validity of methodology was checked by the biological certified reference materials. During this study, 78% of 32 patients aged above 50 years, registered after third MI attack, died. In these subjects, the levels of As, Cd, Co, Ni, and Pb in blood samples were higher in MI patients as compared with referents (p < 0.05), while increased by 11.7%, 12.2%, 5.55%, and 7.2%, respectively, in the blood samples of those patients who tolerated the third MI attack (p = 0.12). The high level of understudied toxic elements may play a role in the mortality of MI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinhold B (1994) Environmental cardiology: getting to the heart of the matter. Environ Health Perspect 112:880–887

    Article  Google Scholar 

  2. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  3. Stocker R, Keaney JF Jr (2005) New insights on oxidative stress in the artery wall. J Thromb Haemost 3:1825–1834

    Article  PubMed  CAS  Google Scholar 

  4. Vlad M, Caseanu E, Uza G, Petrescu M (1994) Concentration of copper, zinc, chromium, iron and nickel in the abdominal aorta of patients deceased with coronary heart disease. J Trace Elem Electrolytes Health Dis 8:111–114

    PubMed  CAS  Google Scholar 

  5. Simeonova PP, Luster MI (2004) Arsenic and atherosclerosis. Toxicol Appl Pharmacol 198:444–449

    Article  PubMed  CAS  Google Scholar 

  6. Chen CJ, Wu MM, Lee SS, Wang JD, Cheng SH, Wu HY (1988) Atherogenicity and carcinogenicity of high-arsenic artesian well water: multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 8:452–460

    PubMed  CAS  Google Scholar 

  7. Welch K, Higgins I, Oh M, Burchfiel C (1982) Arsenic exposure, smoking, and respiratory cancer in copper smelter workers. Arch Environ Health 37:325–335

    PubMed  CAS  Google Scholar 

  8. Mukherjee AB, Bhattacharya P (2002) Atmospheric emissions, depositions, and transformations of arsenic in natural ecosystem in Finland. Scientific World Journal 2:1667–1675

    PubMed  Google Scholar 

  9. Liu J, Zheng B, Aposhian HV et al (2002) Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environ Health Perspect 110:119–122

    Article  PubMed  Google Scholar 

  10. Hwang YH, Lee ZY, Wang JD et al (2002) Monitoring of arsenic exposure with speciated urinary inorganic arsenic metabolites for ion implanter maintenance engineers. Environ Res 90:207–216

    Article  PubMed  CAS  Google Scholar 

  11. WHO (2001) Arsenic and arsenic compounds. Environmental health criteria 224. World Health Organization, Geneva

    Google Scholar 

  12. ATSDR (2006) Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic, Atlanta, GA

    Google Scholar 

  13. ACGIH (2004) American Conference of Governmental Industrial Hygienists. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, Cincinnati, OH

    Google Scholar 

  14. Leggett RW (2008) The biokinetics of inorganic cobalt in the human body. Sci Total Environ 389:259–269

    Article  PubMed  CAS  Google Scholar 

  15. Gennart JP, Lauwerys R (1990) Ventilatory function of workers exposed to cobalt and diamond containing dust. Int Arch Occup Environ Health 62:333–336

    Article  PubMed  CAS  Google Scholar 

  16. IARC (1991) Monographs on the evaluation of carcinogenic risks to humans, vol. 52. Chlorinated drinking-water; chlorinated by-products; some other halogenated compounds; cobalt and cobalt compounds. International Agency for Research on Cancer. World Health Organization. IARC Press, Lyon, pp 363–487

  17. Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  Google Scholar 

  18. Nawrot TS, Thijs L, Den Hond EM, Roels HA, Staessen JA (2002) An epidemiological reappraisal of the association between blood pressure and blood lead: a metal analysis. J Hum Hypertens 16:123–131

    Article  PubMed  CAS  Google Scholar 

  19. ATSDR (1999) Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  20. Fujiwara Y, Watanabe S, Kaji T (1998) Promotion of cultured vascular smooth muscle cell proliferation by low levels of cadmium. Toxicol Lett 94:175–180

    Article  PubMed  CAS  Google Scholar 

  21. Nomiyama K, Nomiyama H (2000) Cadmium-induced elevation of blood pressure. J Trace Elem Exp Med 13:155–163

    Article  CAS  Google Scholar 

  22. Engvall J, Perk J (1985) Prevalence of hypertension among cadmium exposed workers. Arch Environ Health 40(3):185–190

    PubMed  CAS  Google Scholar 

  23. Lauwerys R, Bernard A, Roels H, Buchet JP (1994) Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40(7):1391–1394

    PubMed  CAS  Google Scholar 

  24. Waalkes MP, Coogan TP, Barter RA (1992) Toxicological principles of metal carcinogenesis with special emphasis on cadmium. Crit Rev Toxicol 22:175–201

    Article  PubMed  CAS  Google Scholar 

  25. Jarup L, Berglund M, Elinder CG et al (1998) Health effects of cadmium exposure a review of the literature and a risk estimate. Scand J Work Environ Health 24:1–51

    PubMed  Google Scholar 

  26. Schwartz BS, Lee BK, Lee GS et al (2001) Association of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with neurobehavioral teat scores in South Korean lead workers. Am J Epidemiol 53:453–464

    Article  Google Scholar 

  27. Kim R, Rotnitzky A, Aparrow D et al (1996) A longitudinal study of low level lead exposure and impairment of renal function: the Normative Aging study. J Am Med Assoc 275:1177–1181

    Article  CAS  Google Scholar 

  28. Korick SA, Hunter DJ, Rotnitzky A, Hu H (1999) Lead and hypertension in a sample of middle aged women. Am J Public Health 89:330–335

    Article  Google Scholar 

  29. Cheng Y, Schwartz J, Sparrow D et al (2001) A prospective study of bone lead level and hypertension: The Normative Aging Study. Am J Epidemiol 153:164–171

    Article  PubMed  CAS  Google Scholar 

  30. Centers for Disease Control (1991) Preventing lead poisoning in young children. USA Department of Health and Human Services, Centers for Diseased Control, Atlanta. DHHS publication no. (PHS/CDC) 1992, 627-633

  31. Malo JL, Cartier A, Doepner M (1982) Occupational asthma caused by nickel sulfate. J Allergy Clin Immunol 69:55–59

    Article  PubMed  CAS  Google Scholar 

  32. Vienna A, Capucci E, Wolfsperger M, Hauser G (1995) Heavy metal concentration of hair of students in Rome. Anthropolgischer Anzeiger 53(1):27–32

    CAS  Google Scholar 

  33. Christensen JM (1995) Human exposure to toxic metals: factor influencing interpretation of biomonitoring results. Sci Total Environ 166:89–135

    Article  PubMed  CAS  Google Scholar 

  34. Soylak M, Saraçoglu S, Tüzen M, Mendil D (2005) Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chem 92:649–652

    Article  CAS  Google Scholar 

  35. Karatepe A, Korkmaz E, Soylak M, Elci L (2010) Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters. J Hazard Mater 173:433–437

    Article  PubMed  CAS  Google Scholar 

  36. Andersson A, Siman G (1991) Levels of cadmium as influenced by lime and fertilizer level. Acta Agric Scand 41:3–11

    Article  CAS  Google Scholar 

  37. Kumpulainen J (1995) In: Oskarsson A (ed) Chromium. In risk evaluation of essential trace elements- essential versus toxic levels of intake Nord: 18. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  38. Osman K, Bjorkman L, Mielzynska D, Lind B, Sundstedt K, Palm B, Nordberg M (1994) Blood levels of lead, cadmium, and selenium in children from Bytom, Poland. Intern J Environ Health Res 4:223–225

    Article  CAS  Google Scholar 

  39. Christian MS (2001) Introduction/overview: gender-based differences in pharmacologic and toxicologic responses. Int J Toxicol 20:145–148

    Article  PubMed  CAS  Google Scholar 

  40. Gandhi M, Aweeka F, Greenblatt RM, Blaschke TF (2004) Sex differences in pharmacokinetics and pharmacodynamics. Annu Rev Pharmacol Toxicol 44:499–523

    Article  PubMed  CAS  Google Scholar 

  41. Miller MA (2001) Gender-based differences in the toxicity of pharmaceuticals—the Food and Drug Administration’s perspective. Int J Toxicol 20:149–152

    Article  PubMed  CAS  Google Scholar 

  42. Tang YR, Zhang SQ, Xiong Y, Zhao Y, Fu H, Zhang HP (2003) Studies of five microelement contents in human serum, hair, and fingernails correlated with aged hypertension and coronary heart disease. Biol Trace Elem Res 92:97–104

    Article  PubMed  CAS  Google Scholar 

  43. Soylak M, Elci L, Dogan M (1999) Flame atomic absorption spectrometric determination of cadmium, cobalt, copper, lead and nickel in chemical grade potassium salts after an enrichment and separation procedure. J Trace and Microprobe Tech 17:149–156

    CAS  Google Scholar 

  44. Ghaedi M, Tavallali H, Shokrollahi A, Zahedi M, Niknam K, Soylak M (2009) Preconcentration and determination of zinc and lead ions by a combination of cloud point extraction and flame atomic absorption spectrometry. Clean-Soil Air Water 37:328–333

    Article  CAS  Google Scholar 

  45. Mesko MF, De Moraes DP, Barin JS, Dressler VL, Knappet G (2006) Digestion of biological materials using the microwave-assisted sample combustion technique. J Microchemical 82:183–188

    Article  CAS  Google Scholar 

  46. Afridi HI, Kazi TG, Kazi GH, Jamali MK, Arain MB (2006) Evaluation of toxic metals in biological samples (scalp hair, blood and urine) of steel mill workers by electrothermal atomic absorption spectrometry. Toxicol Ind Health 22:381–393

    Article  PubMed  CAS  Google Scholar 

  47. Afridi HI, Kazi TG, Kazi GH, Jamali MK, Arain MB, Jalbani N, Sarfaraz RA, Kandhro GA, Shah AQ, Baig JA (2009) Evaluation of arsenic, cobalt, copper and manganese in biological Samples of steel mill workers by electrothermal atomic absorption spectrometry. Toxicol Ind Health 25:59–69

    Article  PubMed  CAS  Google Scholar 

  48. Chen SL, Yeh SJ, Yang MH, Lin TH (1995) Trace element concentration and arsenic speciation in the well water of a Taiwan area with endemic blackfoot disease. Biol Trace Elem Res 48:263–274

    Article  PubMed  CAS  Google Scholar 

  49. Hsueh YM, Wu WL, Huang YL, Chiou HY, Tseng CH, Chen CJ (1998) Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure. Atherosclerosis 141:249–257

    Article  PubMed  CAS  Google Scholar 

  50. IARC (2004) Some drinking-water disinfectants and contaminants, including arsenic: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 84. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  51. NRC (2001) Arsenic in drinking water. National Academy Press, Washington, DC

    Google Scholar 

  52. Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 27:1405–1412

    Article  PubMed  CAS  Google Scholar 

  53. Waalkes MP, Fox DA, States JC, Patierno SR, Mccabe MJJ (2000) Metals and disorders of cell accumulation: modulation of apoptosis and cell proliferation. Toxicol Sci 56:255–261

    Article  PubMed  CAS  Google Scholar 

  54. Alexandersson R (1988) Blood and urinary concentrations as estimators of cobalt exposure. Arch Environ Health 43:299–303

    Article  PubMed  CAS  Google Scholar 

  55. Jarvis JQ, Hammond E, Meier R (1992) Cobalt cardiomyopathy: a report of two cases from mineral assay laboratories and a review of the literature. J Occup Med 34(6):620–626

    PubMed  CAS  Google Scholar 

  56. Clyne N, Hofman-Bang C, Haga Y (2001) Chronic cobalt exposure affects antioxidants and ATP production in rat myocardium. Scand J Clin Lab Invest 61(8):609–614

    Article  PubMed  CAS  Google Scholar 

  57. Vahter M, Berglund M, Akesson A, Liden C (2002) Metals and women’s health. Environ Res 88:145–155

    Article  PubMed  CAS  Google Scholar 

  58. Akesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, Skerfving S, Vahter M (2006) Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect 114:830–834

    Article  PubMed  Google Scholar 

  59. Alfven T, Elinder CG, Hellstrom L, Lagarde F, Jarup L (2004) Cadmium exposure and distal forearm fractures. J Bone Miner Res 19:900–905

    Article  PubMed  CAS  Google Scholar 

  60. Yiin SJ, Chern CL, Sheu JY, Tseng WC, Lin TH (1999) Cadmium induced renal lipid peroxidation in rats and protection by selenium. J Toxicol Environ Health A 57:403–413

    Article  PubMed  CAS  Google Scholar 

  61. Trzcinka-Ochocka M, Jakubowski M, Razniewska G, Halatek T, Gazewski A (2004) The effects of environmental cadmium exposure on kidney function: the possible influence of age. Environ Res 95:143–150

    Article  PubMed  CAS  Google Scholar 

  62. Houston DK, Johnson MA (1999) Lead as a risk factor for hypertension in women. Nutr Rev 57:277–279

    Article  PubMed  CAS  Google Scholar 

  63. Korrick SA, Hunter DJ, Rotnitzky A, Hu H, Speizer FE (1999) Lead and hypertension in a sample of middle-aged women. Am J Public Health 89:330–335

    Article  PubMed  CAS  Google Scholar 

  64. Nash D, Magder L, Lustberg M, Sherwin RW, Rubin RJ, Kaufmann RB, Silbergeld EK (2003) Blood lead, blood pressure, and hypertension in perimenopausal and postmenopausal women. J Am Med Assoc 289:1523–1532

    Article  CAS  Google Scholar 

  65. Muldoon SB, Cauley JA, Kuller LH, Morrow L, Needleman HL, Scott J, Hooper FJ (1996) Effects of blood lead levels on cognitive function of older women. Neuroepidemiology 15:62–72

    Article  PubMed  CAS  Google Scholar 

  66. Payton M, Riggs KM, Spiro A III, Weiss ST, Hu H (1998) Relations of bone and blood lead to cognitive function: the VA Normative Aging Study. Neurotoxicol Teratol 20:19–27

    Article  PubMed  CAS  Google Scholar 

  67. Schwartz BS, Stewart WF, Bolla KI, Simon PD, Bandeen-Roche K, Gordon PB, Links JM, Todd AC (2000) Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology 55:1144–1150

    PubMed  CAS  Google Scholar 

  68. Ris MD, Dietrich KN, Succop PA, Berger OG, Bornschein RL (2004) Early exposure to lead and neuropsychological outcome in adolescence. J Int Neuropsychol Soc 10:261–270

    Article  PubMed  CAS  Google Scholar 

  69. Ding Y, Gonick HC, Vaziri ND (2000) Lead promotes hydroxyl radical generation and lipid peroxidation in cultured aortic endothelial cells. Am J Hypertens 13:552–555

    Article  PubMed  CAS  Google Scholar 

  70. Moller L, Kristensen TS (1992) Blood lead as a cardiovascular risk factor. Am J Epidemiol 136:1091–1100

    PubMed  CAS  Google Scholar 

  71. Pocock SJ, Shaper AG, Ashby D, Delves HT, Clayton BE (1988) The relationship between blood lead, blood pressure, stroke, and heart attacks in middle-aged British men. Environ Health Perspect 78:23–30

    Article  PubMed  CAS  Google Scholar 

  72. Heo Y, Parsons PJ, Lawrence DA (1996) Lead differentially modifies cytokine production in vitro and in vivo. Toxicol Appl Pharmacol 138:149–157

    Article  PubMed  CAS  Google Scholar 

  73. Nielsen NH, Linneberg A, Menne T, Madsen F, Frolund L, Dirksen A, Jorgensen T (2002) Incidence of allergic contact sensitization in Danish adults between 1990 and 1998; the Copenhagen Allergy Study, Denmark. Br J Dermatol 147:487–492

    Article  PubMed  CAS  Google Scholar 

  74. Liden C (2001) Legislative and preventive measures related to contact dermatitis. Contact Dermat 44:65–69

    Article  CAS  Google Scholar 

  75. Liden C, Norberg K (2005) Nickel on the Swedish market. Follow-up after implementation of the nickel directive. Contact Dermat 52:29–35

    Article  CAS  Google Scholar 

  76. Leach CNJ, Linden JV, Hopfer SM, Crisostomo MC, Sunderman FWJ (1985) Nickel concentrations in serum of patients with acute myocardial infarction or unstable angina pectoris. Clin Chem 31:556–560

    PubMed  Google Scholar 

  77. Coogan TP, Latta DM, Snow ET, Snow ET, Costa M (1989) Toxicity and carcinogenicity of nickel compounds. CRC Crit Rev Toxicol 19:341

    Article  CAS  Google Scholar 

  78. Malinow MR (1996) Plasma homocystine: a risk factor for arterial occlusive diseases. J Nutr 126:1238–1243

    Google Scholar 

  79. Norseth T (1994) Environmental pollution around nickel smelters in the Kola Peninsula (Russia). Sci Total Environ 148:103–108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Higher Education Commission of Pakistan for sponsoring this project.

Conflict of interest statement

The authors have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem Gul Kazi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12011-010-8921-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afridi, H.I., Kazi, T.G., Kazi, N. et al. Association of Environmental Toxic Elements in Biological Samples of Myocardial Infarction Patients at Different Stages. Biol Trace Elem Res 141, 26–40 (2011). https://doi.org/10.1007/s12011-010-8713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8713-2

Keywords

Navigation