Skip to main content
Log in

A Comparative Study of the Oxidative Profile in Graves’ Disease, Hashimoto’s Thyroiditis, and Papillary Thyroid Cancer

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate and compare the oxidative profiles of three thyroid disorders: Graves’ disease (GD), Hashimoto thyroiditis (HT), and papillary thyroid cancer (PTC). Malondialdehyde levels (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities were examined in the plasma of 52 patients (29 untreated HT, 16 untreated GD, and 7 PTC who underwent surgical therapy). Results were compared with those of 30 healthy controls and among the three groups of patients. The GD, HT, and PTC patients exhibited increased plasma MDA levels and SOD activities compared with the controls (p < 0.05, p < 0.05, and p < 0.001, respectively). CAT activities significantly increased only for the PTC and HT patients (p < 0.001 and p < 0.05, respectively), whereas GPx activities significantly decreased only in the GD and PTC (p < 0.05 and p < 0.01, respectively). The comparison among the three groups of patients has shown increased MDA level and SOD activity for the PTC patients as compared to the GD patients (p < 0.01 and p < 0.001, respectively). Compared with HT, PTC patients exhibited significant higher MDA level, SOD, and CAT activities and a significant lower GPx activity (p < 0.01, p < 0.001, p < 0.05, and p < 0.05, respectively). No significant discrepancies were noted between the GD and HT patients. Our results have clearly shown an oxidative profile that is highly disturbed for the PTC patients as compared to those of autoimmune disorders. Future studies are needed to determine whether or not the oxidative stress has a prognostic value in this pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CAT:

Catalase

FT4:

Free thyroxin

FT3:

Free tri-iodothyronin

GPx:

Glutathione peroxidase

GSH:

Glutathione

GD:

Grave’s disease

HT:

Hashimoto thyroiditis

PTC:

Papillary thyroid cancer

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

TBARs:

Thiobarbituric acid reactive species

TPO:

Thyroperoxidase

TG:

Thyroglobulin

T4:

Thyroxin

T3:

Tri-iodothyronin

ROS:

Reactive oxygen species

TSH:

Thyroid-stimulating hormone

Anti-TPO:

Antibody anti-thyroperoxidase

Anti-TG:

Antibody anti-thyroglobulin

TSH-R:

Thyroid-stimulating hormone receptor

TSH:

Thyroid-stimulating hormone

References

  1. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem B 39:44–84

    Article  CAS  Google Scholar 

  2. Mates JM, Perez-Gomez C, Nunez de Castro I (1999) Antioxidant enzymes and human disease. Clin Biochem 1411:385–400

    Google Scholar 

  3. Akinci M, Kosova F, Çetin B et al (2008) Oxidant/antioxidant balance in patients with thyroid cancer. Acta Cir Bras 23(6):551–554

    Article  PubMed  Google Scholar 

  4. Gargouri B, Lassoued S, Ayadi W et al (2009) Lipid peroxidation and antioxidant system in the tumor and in the blood of patients with nasopharyngeal carcinoma. Biol Trace Elem Res 132:27–34

    Article  CAS  Google Scholar 

  5. Guarino V, Castellone MD, Avilla E et al. (2010) Thyroid cancer and inflammation. Mol Cell Endocrinol (in press)

  6. Hultqvist M, Olsson LM, Gelderman KA et al (2009) The protective role of ROS in autoimmune disease. Trends Immunol 30(5):201–208

    Article  CAS  PubMed  Google Scholar 

  7. Chabchoub G, Mnif M, Maalej A et al (2006) Epidemiologic study of autoimmune thyroid disease in south Tunisia. Ann Endocrinol (Paris) 67:591–595

    CAS  Google Scholar 

  8. Oueslati Z, Aloui M, Gritli S et al (2002) Thyroid papillary microcarcinoma. Rev Laryngol Otol Rhinol 123(1):39–42

    CAS  Google Scholar 

  9. Figge J (1999) Epidemiology of thyroid cancer. In: Wartofsky L (ed) Thyroid cancer: a comprehensive guide to clinical management. Humana, Totowa, pp 77–83 (from article: Expression of functional metallothionein isoforms in papillary thyroid cancer 2009)

    Google Scholar 

  10. Santacroce L, Gagliardi S, Scott Kennedy A (2009) Thyroid, papillary carcinoma. Carcinomas of Endocrine Organs (emedicine from WebMD)

  11. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  12. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  13. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  14. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  15. Degroot LJ, Quintans J (1989) The causes of auto-immune thyroid disease. Endocr Rev 10:537–562

    Article  CAS  PubMed  Google Scholar 

  16. Weetman AP, McGregor AM (1974) Autoimmune thyroid disease: further development in our understanding. Endocr Rev 15:788–830

    Google Scholar 

  17. Tomer Y, Davies TF (1993) Infection, thyroid disease and auto-immunity. Endocr Rev 14:107–120

    CAS  PubMed  Google Scholar 

  18. Ademoglu E, Özbey N, Erbil Y (2006) Determination of oxidative stress in thyroid tissue and plasma of patients with Graves’ disease. Eur J Int Med 17:545–550

    Article  CAS  Google Scholar 

  19. Bednarek J, Wysocki H, Sowinski J (2005) Peripheral parameters of oxidative stress in patients with infiltrative Graves’ ophthalmopathy treated with corticosteroids. Immunol Lett 93:227–232

    Article  Google Scholar 

  20. Komosinska-Vassev K, Olczyk K, Kucharz EJ et al (2000) Free radical activity and antioxidant defense mechanisms in patients with hyperthyroidism due to Graves’ disease during therapy. Clin Chim Acta 300:107–117

    Article  CAS  PubMed  Google Scholar 

  21. Gerenova J, Gadjeva V (2005) Changes in parameters of oxidative stress in patients with Graves’ disease. Trakia Journal of Sciences 3:32–36

    Google Scholar 

  22. Rastogi L, Godbole MM, Madhur R et al (2006) Reduction in oxidative stress and cell death explains hypothyroidism induced neuropretection subsequent to ischemia/reperfusion insult. Exp Neur 200:290–300

    Article  CAS  Google Scholar 

  23. Baskol G, Atmaca H, Tanriverdi F et al (2007) Oxidative stress and antioxidant status in patients with hypothyroidism before and after treatment. Exp Clin Endocrinol Diabetes 115:522–526

    Article  CAS  PubMed  Google Scholar 

  24. Videla LA (2000) Energy metabolism thyroid calorigenesis and oxydative stress: functional and cytotoxic consequences. Redox Rep 5:265–275

    Article  CAS  PubMed  Google Scholar 

  25. Fernandez V, Barrientos X, Kipreos K et al (1985) Superoxide radical generation, NADPHoxidase activity, and cytochrome P450 content in an experimental hyperthyroid state: relation to lipid peroxidation. Endocrinology 117:496–501

    Article  CAS  PubMed  Google Scholar 

  26. Nanda N, Bobby Z, Hamide A et al (2007) Association between oxidative stress and coronary lipid risk factors in hypothyroid women is independent of body mass index. Metabolism 56:1350–1355

    Article  CAS  PubMed  Google Scholar 

  27. Nobar-Rahbani M, Bahrami A, Norazarian M et al (2004) Correlation between serum levels of cholesterol and homocysteine with oxidative stress in hypothyroid patients. Int J Endocrinol Metab 2:103–109

    Google Scholar 

  28. Erdamar H, Demirci H, Yaman H et al (2008) The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status. Clin Chem Lab Med 46:1004–1010

    Article  CAS  PubMed  Google Scholar 

  29. Messarah M, Boulakoud SM, Boumendjel A et al (2007) The impact of thyroid activity variations on some oxidizing-stress parameters in rats. Anim Biol Pathol 330:107–112

    CAS  Google Scholar 

  30. Paller MS, Sikova JJ (1986) Hypothyroïdism protects against free radical damage in ishchemic acute renal failure. Kidney Int 29:1162–1166

    Article  CAS  PubMed  Google Scholar 

  31. Monteiro Gil O, Oliveira NG, Rodrigues AS et al (2000) Cytogenetic alterations and oxidative stress in thyroid cancer patients after iodine-131 therapy. Mutagenesis 15:69–75

    Article  CAS  PubMed  Google Scholar 

  32. Weetman AP (2004) Cellular immune responses in autoimmune thyroid disease. Clin Endocrinol 61:405–413

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saloua Lassoued.

Additional information

Saloua Lassoued and Malek Mseddi have equally contributed in this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassoued, S., Mseddi, M., Mnif, F. et al. A Comparative Study of the Oxidative Profile in Graves’ Disease, Hashimoto’s Thyroiditis, and Papillary Thyroid Cancer. Biol Trace Elem Res 138, 107–115 (2010). https://doi.org/10.1007/s12011-010-8625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8625-1

Keywords

Navigation