Skip to main content
Log in

Corticosterone Induces Dysregulation of Iron Metabolism in Hippocampal Neurons In Vitro

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 23 February 2010

Abstract

Iron is required for neuronal function but in excess generates neurodegeneration. Although the iron homeostasis machinery in neurons has been described extensively, little is known about the influence of corticosterone on the iron homeostasis in neurons. In this study, we characterized the response of hippocampal neurons to a model of progressive corticosterone condition. We found that increasing extracellular corticosterone-induced iron accumulation killed a large proportion of neurons. Iron concentrations were significantly increased in the corticosterone-treated cells. In the hippocampal neurons, corticosterone decreased expression of ferritin and increased expression of transferrin receptor1 (TfR1), iron regulatory protein1 (IRP1), and divalent metal transporter 1. Corticosterone-induced elevation of IRP1 expression can cause increase of TfR1 and decrease of ferritin expression, which further leads to iron accumulation in hippocampal neurons and subsequently increases the oxidative damage of the neurons; it is indicated that corticosterone might be an important reason for iron deposition-caused neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NPBI:

Non-protein-bound iron

TfR1:

Transferrin receptor1

Fn:

Ferritin

IRP1:

Iron regulatory protein1

DMT1:

Divalent metal transporter 1

IRE:

Iron response element

CORT:

Corticosterone

PD:

Parkinson's disease

AD:

Alzheimer's disease

References

  1. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28:345–349

    Article  CAS  PubMed  Google Scholar 

  2. Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17

    Article  PubMed  Google Scholar 

  3. Wei CL, Zhou J, Huang XQ, Li M (2008) Effect of psychological stress on serum iron and erythropoiesis. Int J Hematol 88:52–56

    Article  PubMed  Google Scholar 

  4. Ma L, Wang W, Zhao M, Li M (2008) Foot-shock stress-induced regional iron accumulation and altered iron homeostatic mechanisms in rat brain. Biol Trace Elem Res 126:204–213

    Article  CAS  PubMed  Google Scholar 

  5. Wang L, Wang WY, Zhao M, Ma L, Li M (2008) Psychological stress induces dysregulation of iron metabolism in rat brain. Neuroscience 155:24–30

    Article  CAS  PubMed  Google Scholar 

  6. Zhao M, Chen J, Wang W, Wang L, Ma L, Shen H, Li M (2008) Psychological stress induces hypoferremia through the IL-6-hepcidin axis in rats. Biochem Biophys Res Commun 373:90–93

    Article  CAS  PubMed  Google Scholar 

  7. Bremner J, Narayan M, Anderson E, Staib L, Miller H, Charney D (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    Article  CAS  PubMed  Google Scholar 

  8. Pitman R, Orr S (1990) Twenty-four hour urinary cortisol and catecholamine excretion in combat-related PTSD. Biol Psychiatry 27:245–247

    Article  CAS  PubMed  Google Scholar 

  9. Bremner J (1999) Does stress damage the brain? Biol Psychiatry 45:797–805

    Article  CAS  PubMed  Google Scholar 

  10. Nilsson UA, Bassen M, Savman K, Kjellmer I (2002) A simple and rapid method for the determination of ‘free’ iron in biological fluids. Free Radic Res 36:677–684

    Article  CAS  PubMed  Google Scholar 

  11. Lee DW, Andersen JK, Kaur D (2006) Iron dysregulation and neurodegeneration: the molecular connection. Mol Interv 6:89–97

    Article  CAS  PubMed  Google Scholar 

  12. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  CAS  PubMed  Google Scholar 

  13. Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    Article  CAS  PubMed  Google Scholar 

  14. Gutteridge JM (1992) Iron and oxygen radicals in brain. Ann Neurol 32:S16–S21

    Article  CAS  PubMed  Google Scholar 

  15. Caltagirone A, Weiss G, Pantopoulos K (2001) Modulation of cellular iron metabolism by hydrogen peroxide. Effects of H2O2 on the expression and function of iron-responsive element-containing mRNAs in B6 fibroblasts. J Biol Chem 276:19738–19745

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez D, Drapier JC, Bouton C (2004) Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions. J Biol Chem 279:43345–43351

    Article  CAS  PubMed  Google Scholar 

  17. Mehlhase J, Sandig G, Pantopoulos K, Grune T (2005) Oxidation-induced ferritin turnover in microglial cells: role of proteasome. Free Radical Biol Med 38:276–285

    Article  CAS  Google Scholar 

  18. Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P (1995) A quantitative analysis of isoferritins in select regions of aged, Parkinsonian, and Alzheimer's diseased brains. J Neurochem 65:717–724

    Article  CAS  PubMed  Google Scholar 

  19. Morris CM, Candy JM, Oakley AE, Taylor GA, Mountfort S, Bishop H, Ward MK, Bloxham CA, Edwardson JA (1989) Comparison of the regional distribution of transferrin receptors and aluminium in the forebrain of chronic renal dialysis patients. J Neurol Sci 94:295–306

    Article  CAS  PubMed  Google Scholar 

  20. Garcia R (2001) Stress, hippocampal plasticity, and spatial learning. Synapse 40:180–183

    Article  CAS  PubMed  Google Scholar 

  21. Rachal Pugh C, Fleshner M, Watkins LR, Maier SF, Rudy JW (2001) The immune system and memory consolidation: a role for the cytokine IL-1beta. Neurosci Biohehav Rev 25:29–41

    Article  CAS  Google Scholar 

  22. Esch T, Stefano GB, Fricchione GL, Benson H (2002) Stress in cardiovascular diseases. Med Sci Monit 8:RA93–RA101

    PubMed  Google Scholar 

  23. Harbuz M (2002) Neuroendocrine function and chronic inflammatory stress. Exp Physiol 87:519–525

    Article  CAS  PubMed  Google Scholar 

  24. Andrews NC, Fleming MD, Gunshin H (1999) Iron transport across biologic membranes. Nutr Rev 57:114–123

    Article  CAS  PubMed  Google Scholar 

  25. Lopez JF, Akil H, Watson SJ (1999) Neural circuits mediating stress. Biol Psychiatry 46:1461–1471

    Article  CAS  PubMed  Google Scholar 

  26. Hoschl C, Hajek T (2001) Hippocampal damage mediated by corticosteroids—a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci 251(Suppl. 2):II81–II82

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lv.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12011-010-8620-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wang, H., Li, L. et al. Corticosterone Induces Dysregulation of Iron Metabolism in Hippocampal Neurons In Vitro. Biol Trace Elem Res 137, 88–95 (2010). https://doi.org/10.1007/s12011-009-8565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8565-9

Keywords

Navigation