Skip to main content
Log in

Lead and Arsenic Levels in Women with Different Body Mass Composition

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate whether lead (Pb) and arsenic (As) levels in biological fluids were associated to the body composition in a group of reproductive-age women. Voluntary childbearing-age women (n = 107) were divided into three groups according to their body mass index (BMI: weight/height2 (kg/m2): low weight (BMI<18.5 kg/m2), normal \( \left( {{\text{BMI}} > 19\kern1.5pt<\kern1.5pt24.9\,{{\text{kg}} \mathord{\left/{\vphantom {{\text{kg}} {{{\text{m}}^{\text{2}}}}}} \right.} {{{\text{m}}^{\text{2}}}}}} \right) \), and overweight (BMI>25 kg/m2). Body composition and fat mass percentage were determined by the isotopic dilution method utilizing deuterated water. Blood lead concentrations were determined by graphite furnace atomic absorption spectrometry and urinary arsenic (AsU) concentrations by inductively coupled plasma mass spectrometry. The type and frequency of food consumption and lifestyle-related factors were also registered. Most women had \( {\text{PbB}}\,{\text{levels}} > 2\kern1.5pt<\kern1.5pt10\,{\mu{{\text{ g}}} \mathord{\left/{\vphantom {\mu{{\text{ g}}} {\text{dL}}}} \right.} {\text{dL}}} \), and only 2.6% had AsU concentrations above 50 μg/L. The levels of these toxic elements were not found to be associated with the fat mass percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Milton A, Hasan Z, Shahidullah S, Sharmin S et al (2004) Association between nutritional status and arsenicosis due to chronic arsenic exposure in Bangladesh. Int J Environ Health Res 4:99–108

    Google Scholar 

  2. Islam L, Nabi A, Rahman M, Khan M et al (2004) Association of clinical complications with nutritional status and the prevalence of leukopenia among arsenic patients in Bangladesh. Int J Environ Res Public Health 1:74–82

    Article  PubMed  Google Scholar 

  3. Mitra S, Mazumder DN, Basu A et al (2004) Nutritional factors and susceptibility to arsenic-caused skin lesions in West Bengal, India. Environ Health Perspect 112:1104–1109

    CAS  PubMed  Google Scholar 

  4. Gamble M, Liu X, Ahsan H et al (2005) Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environ Health Perspect 113:1683–1688

    Article  CAS  PubMed  Google Scholar 

  5. Shih R, Hu H, Weisskopf M, Schwartz B et al (2007) Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect 115:483–492

    Article  CAS  PubMed  Google Scholar 

  6. Gracia R, Snodgrass W (2007) Lead toxicity and chelation therapy. Am J Health Syst Pharm 64:45–53

    Article  CAS  PubMed  Google Scholar 

  7. WHO (2001) Environmental levels and human exposure. In: Arsenic compounds. 2nd ed. WHO, Geneva

  8. Nordic Council of Ministers. Lead Review. WHO (2003) http://www.who.int/ifcs/documents/forums/forum5/nmr_lead.pdf

  9. WHO (2003) Assessing the environmental burden of disease at national and local levels. In: Environmental burden of disease series, no. 2. WHO, Geneva

  10. Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366:701–721

    Article  CAS  PubMed  Google Scholar 

  11. Menke A, Muntner P, Batuman V et al (2006) Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation 114:1388–1394

    Article  CAS  PubMed  Google Scholar 

  12. Lustberg M, Silbergeld E (2002) Blood lead levels and mortality. Arch Intern Med 62:2443–2449

    Article  Google Scholar 

  13. Rahman M, Tondel M, Ahmad S et al (1999) Hypertension and arsenic exposure in Bangladesh. Hypertension 33:74–78

    CAS  PubMed  Google Scholar 

  14. Brown K, Ross G (2002) Arsenic, drinking water, and health: a position paper of the American Council on Science and Health. Regul Toxicol Pharmacol 36:162–174

    Article  CAS  PubMed  Google Scholar 

  15. ATSDR (2005) Agency for Toxic Substances and Disease Registry. Methods Analytical In: Arsenic; Atlanta, GA, USA. http://www.atsdr.cdc.gov/csem/arsenic/biologic_fate.html

  16. ATSDR (2007) Agency for Toxic Substances and Disease Registry. Case studies in environmental medicine. In: ATSDR Publication No.: ATSDR-HE-CS-2002-2003; Atlanta, GA, USA. http://www.atsdr.cdc.gov/HEC/CSEM/arsenic/cover.html#alert

  17. DS 594/1999 (1999) Ministry of Health, Chile. Decreto Supremo Nº 594. Reglamento sobre condiciones sanitarias y ambientales. Gobierno de Chile, Ministerio de Salud

  18. Ferruz J, Oyanguren C, Molina L (2006) Determinación de niveles de arsénico no dietario urinario en una población de trabajadores expuestos, II Región. Actualidad Científica y Técnica, Ministerio de Salud-Conicyt, pp 1-4

  19. Lee MG, Chun OK, Song WO (2005) Determinants of the blood lead level of US women of reproductive age. J Am Coll Nutr 24:1–9

    PubMed  Google Scholar 

  20. Llanos MN, Ronco AM (2009) Fetal growth restriction is related to placental levels of cadmium, lead and arsenic but not with antioxidant activities. Reprod Toxicol 188:186–191

    Google Scholar 

  21. Ronco AM, Arguello G, Munoz L et al (2005) Metals content in placentas from moderate cigarette consumers: correlation with newborn birth weight. Biometals 18:233–241

    Article  CAS  PubMed  Google Scholar 

  22. Mahaffey K (1990) Environmental lead toxicity: nutrition as a component of intervention. Environ Health Perspect 89:75–78

    Article  CAS  PubMed  Google Scholar 

  23. Burger J, Diaz-Barriga F, Marafante E et al (2003) Methodologies to examine the importance of host factors in bioavailability of metals. Ecotoxicol Environ Saf 56:20–31

    Article  CAS  PubMed  Google Scholar 

  24. Barr D, Wilder L, Caudill S et al (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113:192–200

    Article  CAS  PubMed  Google Scholar 

  25. Ellis KJ (2001) Selected body composition methods can be used in field studies. J Nutr 131:1589S–1595S

    CAS  PubMed  Google Scholar 

  26. Eckhardt CL, Adair LS, Caballero B et al (2003) Estimating body fat from anthropometry and isotopic dilution: a four-country comparison. Obesity Res 11:1553–1562

    Article  Google Scholar 

  27. Muñoz O, Bastias J, Araya M et al (2005) Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a total diet study. Food ChemToxicol 43:1647–1655

    Article  CAS  Google Scholar 

  28. OSHA (2003) Occupational Safety and Health Standards. Health Standards: Toxic and Hazardous Substances: Lead. CFR 307 1910.102. Occupational Safety & Health Administration; Washington, DC, USA.

  29. Metropolitan Environmental Health Services, SESMA, Chile (2002) Caracterización de elementos inorgánicos presentes en el aire de la Región Metropolitana. Servicio de Salud Metropolitano del Ambiente-Ministerio de Salud, Santiago

    Google Scholar 

  30. CDC (2002) Managing elevated blood lead levels among young children: recommendations from the advisory committee on childhood lead poisoning prevention. Centers for Disease Control and Prevention, Atlanta, GA, USA.

    Google Scholar 

  31. Kosnett M, Wedeen R, Rothenberg S et al (2007) Recommendations for medical management of adult lead exposure. Environ Health Perspect 115:463–471

    Article  CAS  PubMed  Google Scholar 

  32. Navas-Acien A, Guayar E, Silbergeld E et al (2007) Lead exposure and cardiovascular disease—a systematic review. Environ Health Perspect 115:472–482

    Article  CAS  PubMed  Google Scholar 

  33. U.S. Environmental Protection Agency (1998) Arsenic, inorganic; CASRN 7440-38-2. http://www.epa.gov/NCEA/iris/subst/0278.htm

  34. Caceres D, Pino P, Montesinos N et al (2005) Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in a Chilean population. Environ Res 98:151–159

    Article  CAS  PubMed  Google Scholar 

  35. Yañez L, Ortiz D, Calderon J et al (2002) Overview of human health and chemical mixtures: problems facing developing countries. Environ Health Perspect 110(Suppl 6):901–909

    Google Scholar 

  36. Smith A, Arroyo A, Mazumder D et al (2000) Arsenic-induced skin lesions among Atacameno people in Northern Chile despite good nutrition and centuries of exposure. Environ Health Perspect 108:617–620

    Article  CAS  PubMed  Google Scholar 

  37. Gakidou E, Oza S, Vidal Fuertes C et al (2007) Improving child survival through environmental and nutritional interventions: the importance of targeting interventions toward the poor. JAMA 298:1876–1887

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the International Atomic Energy Agency (IAEA) Research Contract No. 13245/R0 and the excellent technical work of Ms. Paola Pismante.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Ronco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronco, A.M., Gutierrez, Y., Gras, N. et al. Lead and Arsenic Levels in Women with Different Body Mass Composition. Biol Trace Elem Res 136, 269–278 (2010). https://doi.org/10.1007/s12011-009-8546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8546-z

Keywords

Navigation