Skip to main content
Log in

Trace Elements Status in Selenium-Deficient Rats—Interaction with Cadmium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although the metabolic and toxicological interactions between essential element selenium (Se) and toxic element cadmium (Cd) have been reported for a long time, the experimental studies explored mostly acute, high-dose interactions. Limited data are available regarding the effects of Se-deficiency on toxicokinetics of cadmium, as well as on the levels of key trace elements—copper, zinc, and iron. In the present study, male and female Wistar weanling rats (n = 40/41) were fed either Se-deficient or Se-adequate diet (<0.06 or 0.14 mg Se per kilogram diet, respectively) for 12 weeks, and from week 9 were drinking water containing 0 or 50 mg Cd/l as cadmium chloride. At the end of the 12-week period, trace element concentrations were estimated by AAS. Selenium-deficient rats of both genders showed significantly lower accumulation of cadmium in the liver, compared to Se-adequate rats. Zinc and iron hepatic levels were not affected by Se-deficiency. However, a significant elevation of copper was found in the liver of Se-deficient rats of both genders. Cadmium supplementation increased zinc and decreased iron hepatic level, regardless of Se status and decreased copper concentration in Se-adequate rats. Se-deficiency was also found to influence the effectiveness of cadmium mobilization in male rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Köhrle J, Brigelius-Flohé R, Böck A et al (2000) Selenium in biology: facts and medical perspectives. Biol Chem 381:849–864

    Article  Google Scholar 

  2. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  CAS  PubMed  Google Scholar 

  3. Kabata-Pendias A (1998) Geochemistry of selenium. J Environ Pathol Toxicol Oncol 17:173–177

    CAS  PubMed  Google Scholar 

  4. Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100:254–268

    CAS  PubMed  Google Scholar 

  5. Nève J (1996) Selenium as a risk factor for cardiovascular diseases. J Cardiovasc Risk 3:42–47

    Article  PubMed  Google Scholar 

  6. Schrauzer GN (2000) Anticarcinogenic effects of selenium. Cell Mol Life Sci 57:1864–1873

    Article  CAS  PubMed  Google Scholar 

  7. Combs GF Jr (2005) Current evidence and research needs to support a health claim for selenium and cancer prevention. J Nutr 135:343–347

    CAS  PubMed  Google Scholar 

  8. International Agency for Research on Cancer Monographs (1993) Cadmium, vol 58. IARC, Lyon, pp 119–238

    Google Scholar 

  9. Satarug S, Baker JR, Urbenjapol S et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  CAS  PubMed  Google Scholar 

  10. Parízek J, Ostádalová I, Benes I, Babický A (1968) Pregnancy and trace elements: the protective effect of compounds of an essential trace element—selenium—against the peculiar toxic effects of cadmium during pregnancy. J Reprod Fertil 16:507–509

    Article  PubMed  Google Scholar 

  11. Eybl V, Sýkora J, Mertl F (1969) Influence of sodium sulfite, sodium tellurite and sodium selenite on the retention of zinc, cadmium and mercury in the organism. Experientia 25(5):504–505 German

    Article  CAS  PubMed  Google Scholar 

  12. Eybl V, Sýkora J, Mertl F (1970) Influence of sodium selenite, sodium tellurite and sodium sulfite on retention and distribution of cadmium in mice. Arch Toxikol 26(2):167–175 German

    Article  CAS  PubMed  Google Scholar 

  13. Merali Z, Singhal RL (1975) Protective effect of selenium on certain hepatotoxic and pancreotoxic manifestations of subacute cadmium administration. J Pharmacol Exp Ther 195:58–66

    CAS  PubMed  Google Scholar 

  14. Parizek J (1978) Interactions between selenium compounds and those of mercury or cadmium. Environ Health Perspect 25:53–55

    Article  CAS  PubMed  Google Scholar 

  15. Flora SJ, Behari JR, Ashquin M, Tandon SK (1982) Time-dependent protective effect of selenium against cadmium-induced nephrotoxicity and hepatotoxicity. Chem Biol Interact 42:345–351

    Article  CAS  PubMed  Google Scholar 

  16. Wahba ZZ, Coogan TP, Rhodes SW, Waalkes MP (1993) Protective effects of selenium on cadmium toxicity in rats: role of altered toxicokinetics and metallothionein. J Toxicol Environ Health 38:171–182

    Article  CAS  PubMed  Google Scholar 

  17. Schrauzer GN (1987) Effects of selenium antagonists on cancer susceptibility: new aspects of chronic heavy metal toxicity. J UOEH 9(Suppl):208–215

    CAS  PubMed  Google Scholar 

  18. Drasch G, Schöpfer J, Schrauzer GN (2005) Selenium/cadmium ratios in human prostates: indicators of prostate cancer risk of smokers and nonsmokers, and relevance to the cancer protective effects of selenium. Biol Trace Elem Res 103:103–107

    Article  CAS  PubMed  Google Scholar 

  19. Schrauzer GN (2008) Interactive effects of selenium and cadmium on mammary tumor development and growth in MMTV-infected female mice. A model study on the roles of cadmium and selenium in human breast cancer. Biol Trace Elem Res 123:27–34

    Article  CAS  PubMed  Google Scholar 

  20. Schrauzer GN (2009) Selenium and selenium-antagonistic elements in nutritional cancer prevention. Crit Rev Biotechnol 29:10–17

    Article  CAS  PubMed  Google Scholar 

  21. Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127(5 Suppl):838S–841S

    CAS  PubMed  Google Scholar 

  22. Jones MM, Singh PK, Jones SG (1990) Optimization of chelating agent structure for the mobilization of aged renal and hepatic cadmium deposits: sodium N-benzyl-4-O-(beta-D-galactopyranosyl)-D-glucamine-N-carbodithioate. Chem Res Toxicol 3:248–253

    Article  CAS  PubMed  Google Scholar 

  23. Meyer SA, House WA, Welch RM (1982) Some metabolic interrelationships between toxic levels of cadmium and nontoxic levels of selenium fed to rats. J Nutr 112:954–961

    CAS  PubMed  Google Scholar 

  24. Jamall IS, Smith JC (1985) Effects of cadmium treatment on selenium-dependent and selenium-independent glutathione peroxidase activities and lipid peroxidation in the kidney and liver of rats maintained on various levels of dietary selenium. Toxicol Appl Pharmacol 80:33–42

    Article  CAS  PubMed  Google Scholar 

  25. El Heni J, Messaoudi I, Hammouda F, Saïd K, Kerkeni A (2008) Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: Histology and Cd accumulation. Food and Chem Toxicol 46:3522–3527

    Article  CAS  Google Scholar 

  26. Petering HG, Choudhury H, Stemmer KL (1979) Some effects of oral ingestion of cadmium on zinc, copper, and iron metabolism. Environ Health Perspect 28:97–106

    Article  CAS  PubMed  Google Scholar 

  27. Stonard MD, Webb M (1976) Influence of dietary cadmium on the distribution of the essential metals copper, zinc and iron in tissues of the rat. Chem Biol Interact 15:349–363

    Article  CAS  PubMed  Google Scholar 

  28. Crowe A, Morgan EH (1997) Effect of dietary cadmium on iron metabolism in growing rats. Toxicol Appl Pharmacol 145:136–146

    Article  CAS  PubMed  Google Scholar 

  29. Schäfer SG, Schwegler U, Schümann K (1990) Retention of cadmium in cadmium-naive normal and iron-deficient rats as well as in cadmium-induced iron-deficient animals. Ecotoxicol Environ Saf 20:71–81

    Article  PubMed  Google Scholar 

  30. Kozlowska K, Brzozowska A, Sulkowska J, Roszkowski W (1993) The effect of cadmium on iron metabolism in rats. Nutr Res 13:1163–1172

    Article  CAS  Google Scholar 

  31. Van Campen DR (1966) Effects of zinc, cadmium, silver and mercury on the absorption and distribution of copper-64 in rats. J Nutr 88:125–130

    PubMed  Google Scholar 

  32. Davies NT, Campbell JK (1977) The effect of cadmium on intestinal copper absorption and binding in the rat. Life Sci 20:955–960

    Article  CAS  PubMed  Google Scholar 

  33. Eybl V, Kotyzova D, Koutensky J, Jones MM, Singh PK (1995) Effect of chelators, monoisoamyl meso-2, 3-dimercaptosuccinate and N-(4-methylbenzyl)-4-O-(beta-D-galactopyranosyl)-D-glucamine-N-carbodithioate, on cadmium and essential element levels in mice. Analyst 120:855–857

    Article  CAS  PubMed  Google Scholar 

  34. Eybl V, Kotyzova D, Koutensky J et al (1993) Influence of new dithiocarbamate analogs—BLDTC and MeBLDTC on cadmium deposits and essential elements level in mice. In: Anke M, Meissner D, & Mills CF (ed) Trace Elements in Man and Animals—TEMA 8, Proceedings of the 8th International Symposium on Trace Elements in Man and Animal, 1993; Jena, Germany. Verlag Media Touristik, pp 947–950

Download references

Acknowledgments

This study was supported by the research grant MSM 0021620819 of the Ministry of Education of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Eybl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotyzová, D., Černá, P., Lešetický, L. et al. Trace Elements Status in Selenium-Deficient Rats—Interaction with Cadmium. Biol Trace Elem Res 136, 287–293 (2010). https://doi.org/10.1007/s12011-009-8541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8541-4

Keywords

Navigation