Skip to main content
Log in

External Iron Regulates Polyphosphate Content in the Acidophilic, Thermophilic Alga Cyanidium caldarium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Transmission electron microscopy revealed the presence of electron-dense bodies (EDB) in the cytosol of the acidophilic, thermophilic red alga Cyanidium caldarium. These bodies contain almost exclusively Fe, P, and O and can play a role in Fe storage. 31P-nuclear magnetic resonance analysis identified a sharp signal at −23.3 ppm, which was attributed to the phosphate groups of the inner portions of polyphosphate chains. From this evidence, as well as that of a previous ESR study (Nagasaka et al., BioMetals 16:465–470, 2003), it can be concluded that polyphosphates are the major anionic constituents of the EDB. Omission of Fe from the culture medium resulted in substantially decreased polyphosphate levels, demonstrating the control of cellular polyphosphate content by the Fe status of the culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Geitler L (1933) Diagnosen neuer Blaualgen von den Sunda-Inseln. Arch Hydrobiol Suppl 12:622–634

    Google Scholar 

  2. Nagasaka S, Nishizawa NK, Negishi T, Satake K, Mori S, Yoshimura E (2002) Novel iron-storage particles may play a role in aluminum tolerance of Cyanidium caldarium. Planta 215:399–404

    Article  PubMed  CAS  Google Scholar 

  3. Nagasaka S, Nishizawa NK, Watanabe T, Mori S, Yoshimura E (2003) Evidence that electron-dense bodies in Cyanidium caldarium have an iron-storage role. BioMetals 16:465–470

    Article  PubMed  CAS  Google Scholar 

  4. Yoshimura E, Nagasaka S, Satake K, Mori S (2000) Mechanism of aluminium tolerance in Cyanidium caldarium. Hydrobiologia 433:57–60

    Article  CAS  Google Scholar 

  5. Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Archiv Mikrobiol 32:270–277

    Article  CAS  Google Scholar 

  6. Kumble KD, Kornberg A (1995) Inorganic polyphosphate in mammalian cells and tissues. J Biol Chem 270:5818–5822

    Article  PubMed  CAS  Google Scholar 

  7. van Voorthuysen T, Regierer B, Springer F, Dijkema C, Vreugdenhil D, Kossmann J (2000) Introduction of polyphosphate as a novel phosphate pool in the chloroplast of transgenic potato plants modifies carbohydrate partitioning. J Biotechnol 77:65–80

    Article  PubMed  Google Scholar 

  8. Dawson MJ, Gadian DG, Wilkie DR (1977) Contraction and recovery of living muscles studies by 31P nuclear magnetic resonance. J Physiol 267:703–735

    PubMed  CAS  Google Scholar 

  9. Kime MJ, Ratcliffe RG, Williams RJP, Loughman BC (1982) The application of 31P nuclear magnetic resonance to higher plant tissue. I. Detection of spectra. J Exp Bot 33:656–669

    Article  Google Scholar 

  10. Gómez-García MR, Kornberg A (2004) Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc Natl Acad Sci U S A 101:15876–15880

    Article  PubMed  CAS  Google Scholar 

  11. Kumble KD, Kornberg A (1996) Endopolyphosphatases for long chain inorganic polyphosphate in yeast and mammals. J Biol Chem 271:27146–27151

    Article  PubMed  CAS  Google Scholar 

  12. Harold FM (1966) Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev 30:772–794

    PubMed  CAS  Google Scholar 

  13. Beever RE, Burns DJW (1980) Phosphorus uptake, storage and utilisation by fungi. Adv Bot Res 8:127–219

    Article  CAS  Google Scholar 

  14. Kulaev IS, Vagabov VM (1983) Polyphosphate metabolism in micro-organism. Adv Microb Physiol 24:83–171

    Article  PubMed  CAS  Google Scholar 

  15. Goldberg J, Gonzalez H, Jensen TE, Corpe WA (2001) Quantitative analysis of the elemental composition and the mass of bacterial polyphosphate bodies using STEM EDX. Microbios 106:177–88

    PubMed  CAS  Google Scholar 

  16. Jensen TE, Corpe WA (1994) Picoplanktonic cyanophytes from three small lakes with special reference to polyphosphate bodies. Arch Hydrobiol Suppl Algol Stud 75:149–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuro Yoshimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasaka, S., Yoshimura, E. External Iron Regulates Polyphosphate Content in the Acidophilic, Thermophilic Alga Cyanidium caldarium . Biol Trace Elem Res 125, 286–289 (2008). https://doi.org/10.1007/s12011-008-8177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8177-9

Keywords

Navigation