Skip to main content
Log in

Ceruloplasmin, an Indicator of Copper Status

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

For clinical purposes, the non-ceruloplasmin copper fraction is routinely derived on the basis that ceruloplasmin binds six Cu atoms. However, this approach is limited because the actual ceruloplasmin copper binding is unclear. We performed direct measurement of the total serum copper and ceruloplasmin in 790 healthy individuals. We used an immunoprecipitation technique to separate ceruloplasmin and determined Cu content. With these values, we calculated the Cu/ceruloplasmin (Cp) ratio and thus generated data to support or discard the theoretical calculation of the non-ceruloplasmin fraction. Average of serum Cu and Cp levels were 18.4 ± 4.4 μmol/l and 390 ± 100 mg/l, respectively. The immunoprecipitation procedure allowed us to calculate a Cu/Cp ratio of 5.8, respectively, which supports the methodology of calculation that assigns a mean of six copper atoms to each ceruloplasmin molecule. With these values, we calculated that, in apparently normal adults, the non-ceruloplasmin copper (NCPC) fraction is lower than 1.3 μmol/l of Cu. In this report, we examine the Cp/Cu ratio by using Cp immunoprecipitation procedure. Our in vitro and in vivo studies indicate that, as a mean, there are 5.8 atoms of Cu per Cp molecule and that <1.3 μmol/l of Cu would correspond to the NCPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Cp:

Ceruloplasmin

Cu:

copper

NCPC:

non-ceruloplasmin copper

References

  1. Chelly J, Tümer Z, Tønneson T, Petterson A, Ishikawa-Brush Y, Tommerup N, Horn N, Monaco AP (1993) Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 3:14–19

    Article  PubMed  CAS  Google Scholar 

  2. Mercer JF, Livingston J, Hall B, Paynter JA, Begy C, Chandrasekharappa S, Lockhart P, Grimes A, Bhave M, Siemieniak D, Glover TW (1993) Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet 3:20–25

    Article  PubMed  CAS  Google Scholar 

  3. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3:7–13

    Article  PubMed  CAS  Google Scholar 

  4. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337

    Article  PubMed  CAS  Google Scholar 

  5. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344–350

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi Y, Heiny ME, Gitlin JD (1993) Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun 197:271–277

    Article  PubMed  CAS  Google Scholar 

  7. Araya M, Olivares M, Pizarro F, González M, Speisky H, Uauy R (2003) Copper exposure and potential biomarkers of copper metabolism. Biometals 16:199–204

    Article  PubMed  CAS  Google Scholar 

  8. Sato M, Gitlin JD (1991) Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin. J Biol Chem 266:5128–5134

    PubMed  CAS  Google Scholar 

  9. Gitlin JD, Schroeder JJ, Lee-Ambrose LM, Cousins RJ (1992) Mechanisms of ceruloplasmin biosynthesis in normal and copper-deficient rat. Biochem J 282:835–839

    PubMed  CAS  Google Scholar 

  10. Harris ZL, Gitlin JD (1996) Genetic and molecular basis for copper toxicity. Am J Clin Nutr 63:S836–S841

    Google Scholar 

  11. Calabrese L, Carbonaro M, Musci G (1988) Chicken ceruloplasmin. Evidence in support of a trinuclear cluster involving type 2 and 3 copper centers. J Biol Chem 263:6480–6483

    PubMed  CAS  Google Scholar 

  12. Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A 96:10812–10817

    Article  PubMed  CAS  Google Scholar 

  13. Bielli P, Bellenchi GC, Calabrese L (2001) Site-directed mutagenesis of human ceruloplasmin: production of a proteolytically stable protein and structure-activity relationships of type 1 sites. J Biol Chem 276:2678–2685

    Article  PubMed  CAS  Google Scholar 

  14. Hellman, Kono S, Mancini GM, Hoogeboom AJ, De Jong GJ, Gitlin JD (2002) Mechanisms of copper incorporation into human ceruloplasmin. J Biol Chem 277:46632–46638

    Article  PubMed  CAS  Google Scholar 

  15. Zaitsev VN, Zaitseva I, Papiz M, Lindley PF (1999) An X-ray crystallographic study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multi-copper oxidase in the plasma. J Biol Inorg Chem 4:579–587

    Article  PubMed  CAS  Google Scholar 

  16. Squitti R, Pasqualetti P, Dal Forno G, Moffa F, Cassetta E, Lupoi D, Vernieri F, Rossi L, Baldassini M, Rossini P (2005) Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology 64:1040–1046

    PubMed  CAS  Google Scholar 

  17. Muller T, van de Sluis B, Mulle W, Pearson P, Wijmenga C (1999) Non-Indian childhood cirrhosis. Eur J Med Res 4:293–297

    PubMed  CAS  Google Scholar 

  18. International Anemia Consultative Group (INACG) (1985)Measurement of iron status: a report of the International Anemia Consultative Group. The Nutrition Foundation, Washington, DC, pp. 1–49

  19. Harlow E, Lane D (1999) Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA

    Google Scholar 

  20. Celis JE, Lauridsen JB, Basse B (1994) Determination of antibody specificity by western blotting and immunoprecipitation. In: Celis JE (ed) Cell Biology. A laboratory handbook, Cap. 2. Academic Press, San Diego, CA, USA, pp 305–314

    Google Scholar 

  21. Tapia L, Gonzalez-Aguero M, Cisternas MF, Suazo M, Cambiazo V, Uauy R, Gonzalez M (2004) Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J 378:617–624

    Article  PubMed  CAS  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  23. Neumann PZ, Sass-Kortsak A (1967) State of copper in human serum: evidence for amino acid-bound fraction. J Clin Invest 46:646–658

    PubMed  CAS  Google Scholar 

  24. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:S797–S811

    Google Scholar 

  25. Olivares M, Pizarro F, Speishy H, Lonnerdal B, Uauy R (1998) Copper in infant nutrition; safety of World Health Organization provisional guideline value of copper content of drinking water. J Pediatr Gastroenterol Nutr 26:251–257

    Article  PubMed  CAS  Google Scholar 

  26. Olivares M, Araya M, Uauy R (2000) Copper homeostasis in infant nutrition: deficit and excess. J Pediatr Gastroenterol Nutr 31:102–111

    Article  PubMed  CAS  Google Scholar 

  27. Eife R, Weiss M, Muller-Hocker M, Lang T, Barros V, Sigmund B, Thanner F, Welling P, Lange H, Wolf W, Rodeck B, Kittel J, Schramel P, Reiter K (1999) Chronic poisoning by copper in tap water: II. Copper intoxications with predominantly systemic symptoms. Eur J Med Res 4:224–228

    PubMed  CAS  Google Scholar 

  28. Twomey P, Viljoen A, House I, Reynols T, Wierzbicki A (2005) Relationship between serum copper, ceruloplasmin, and non-ceruloplasmin-bound copper in routine clinical practice. Clin Chem 51:1558–1559

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Corporación Chilena del Cobre (Cochilco), International Copper Association (ICA, NY, USA), Corporación para Apoyo de la Investigación Científica en Nutrición (CINUT) and Fondo Nacional de Desarrollo Científico y Tecnológico (Fondecyt) 1040979 from M. Araya, in the form of unrestricted grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Arredondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arredondo, M., González, M., Olivares, M. et al. Ceruloplasmin, an Indicator of Copper Status. Biol Trace Elem Res 123, 261–269 (2008). https://doi.org/10.1007/s12011-008-8110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8110-2

Keywords

Navigation