Skip to main content
Log in

The Selenium Levels of Mothers and Their Neonates Using Hair, Breast Milk, Meconium, and Maternal and Umbilical Cord Blood in Van Basin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the present study is to calculate linear regressions between a mother and her child with respect to their selenium concentration (ng/g) in the following traits: maternal blood and umbilical cord blood, maternal and child hair, maternal milk and child umbilical cord blood, maternal milk and meconium, maternal blood plasma, and child meconium. The data were collected at Research Hospital of the University of Yüzüncü Yıl from 30 pairs of mothers and their newborn baby. The mean maternal serum Se level in 30 mothers was 68.52 ± 3.57 ng/g and cord plasma level was 119.90 ± 18.08 ng/g. The Se concentration in maternal and neonatal hair was 330.84 ± 39.03 and 1,124.76 ± 186.84 ng/g, respectively. The Se concentration of maternal milk at day 14 after delivery was determined as 68.63 ± 7.78 ng/g (n = 13) and the concentration of Se was 418.90 ± 45.49 ng/g (n = 22) for meconium of neonatal. There was no significant difference between maternal blood and milk Se levels. However, hair Se concentration was significantly higher than milk and maternal blood Se level. For each trait comparison, the average absolute difference in log10-transformed Se concentration was calculated between a mother and her child. The observed average absolute difference was compared with a test distribution of 1,000 resampled bootstrap averages where the number of samples was maintained but the relationship between a mother and her child was randomized among samples (α = 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Awadallah SM, Abu-Elteen KH, Elkarmi AZ, Qaraein SH, Salem NM, Mubarak MS (2004) Maternal and cord blood serum levels of zinc, copper, and iron, in healthy pregnant Jordanian women. J Trace Elem Exp Med 17:1–8

    Article  CAS  Google Scholar 

  2. Hostetler CE, Kincaid LR, Mirando MA (2003) The role of essential elements in embryonic and fetal development in livestock. Vet J 166:125–129

    Article  PubMed  CAS  Google Scholar 

  3. Van Saun RJ, Herdt TH, Stowe HD (1989) Maternal and fetal selenium concentrations and their interrelationships in dairy cattle. J Nutr 119:1128–1137

    PubMed  Google Scholar 

  4. El-Demerdash FM (2004) Antioxidant effect of vitamin E and selenium on lipid peroxidation, enzyme activities and biochemical parameters in rats exposed to aluminium. J Trace Elem Med Biol 18:113–121

    Article  PubMed  CAS  Google Scholar 

  5. Weiss WP, Colendrander VF, Cunningham CJ (1983) Callahan selenium/vitamin E: role in disease prevention and weight gain of neonatal calves. J Dairy Sci 66:1101–1107

    Article  PubMed  CAS  Google Scholar 

  6. Abdelrahman MM, Kincaid RL (1995) Effects of Se supplementation of cows on maternal transfer to fetal and newborn calves. J Dairy Sci 78:625–630

    Article  PubMed  CAS  Google Scholar 

  7. Pappas AC, Karadas F, Surai PF, Speake BK (2006) The selenium intake of the female chicken influences the selenium status of her progeny. Comp Biochem Physiol Part B Biochem Mol Biol 142:465–474

    Google Scholar 

  8. Bosl MR, Takadu K, Oshima M, Nishimura S, Taketo MM (1997) Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci U S A 94:5531–5534

    Article  PubMed  CAS  Google Scholar 

  9. Matsui M, Oshima M, Oshima H, Takadu K, Maruyama T, Yodoi J, Taketo MM (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178:179–185

    Article  PubMed  CAS  Google Scholar 

  10. Thisse C, Degrave A, Kryukov GV, Gladyshev VN, Obrecht-Pflumio S, Krol A, Thisse B, Lescure A (2003) Spatial and temporal expression patterns of selenoprotein genes during embryogenesis in the zebrafish. Gene Expr Patterns 3:525–532

    Article  PubMed  CAS  Google Scholar 

  11. Schweizer U, Michaelis M, Kohrle J, Schomburg L (2004) Efficient selenium transport from mother to offspring in selenoprotein-P-deficient mice enables dose-dependent rescue of phenotypes associated with selenium deficiency. Biochem J 378:21–26

    Article  PubMed  CAS  Google Scholar 

  12. Kupka R, Msamanga G, Spiegelman D, Rifai N, Hunter DJ, Fawzi WW (2005) Selenium levels in relation to morbidity and mortality among children born to HIV-infected mothers. Eur J Clin Nutr 59:1250–1258

    Article  PubMed  CAS  Google Scholar 

  13. Dorea JG (2002) Selenium and breast-feeding. Br J Nut 88:443–461

    Article  CAS  Google Scholar 

  14. Hostetler CE, Kincaid RL (2004) Maternal selenium deficiency increases hydrogen peroxide and total lipid peroxides in porcine fetal liver. Biol Trace Elem Res 97:43–56

    Article  PubMed  CAS  Google Scholar 

  15. Dylewski ML, Mastro AM, Picciano MF (2002) Maternal selenium nutrition and neonatal immune system development. Biol Neonate 82(2):122–127

    Article  PubMed  CAS  Google Scholar 

  16. Surai PF (2000) Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick. Br Poult Sci 41:235–243

    Article  PubMed  CAS  Google Scholar 

  17. Paton ND, Cantor AH, Pescatore AJ, Ford MJ, Smith CA (2002) The effect of dietary selenium source and level on the uptake of selenium by developing chick embryos. Poultry Sci 81:1548–1554

    CAS  Google Scholar 

  18. Kurtoglu S, Akcakus M, Gunes T, Muhtaroglu S, Kocaoglu C, Poyrazoglu H (2002) Selenium content in maternal and umbilical cord blood in Kayseri province. Çocuk Sagligi Hastalik Derg 45(2):130–134

    Google Scholar 

  19. Micetic-Turk D, Rossipal E, Krachler M, Li F (2000) Maternal selenium status in Slovenia and its impact on the selenium concentration of umbilical cord serum and colostrum. Eur J Clin Nutr 54:522–524

    Article  PubMed  CAS  Google Scholar 

  20. Lorenzo-Alonso MJ, Bermejo-Barrera A, Cocho de Juan JA, Fraga Bermudez JM, Bermejo-Barrera P (2005) Selenium levels in related biological samples: human placenta, maternal and umbilical cord blood, hair and nails. J Trace Elem Med Biol 19:49–54

    Article  PubMed  CAS  Google Scholar 

  21. Harsley JW, Oostdyk TS, Keliher PN (1988) Determination of arsenic and selenium in environmental and agricultural samples by hydride generation atomic absorption spectrometry. J Assoc Off Anal Chem 71:1090–1093

    Google Scholar 

  22. Makhoul IR, Sammour RN, Diamond E, Shohat AI, Tamir A, Shamir R (2004) Selenium concentrations in maternal and umbilical cord blood at 24–42 weeks of gestation: basis for optimization of selenium supplementation to premature infants. Clin Nutr 23:373–381

    Article  PubMed  CAS  Google Scholar 

  23. Butler Walker J, Houseman J, Seddon L, McMullen E, Tofflemire K, Mills C, Corriveau A, Weber JP, LeBlanc A, Walker M, Donaldson SG, Oostdam JV (2006) Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environ Res 100:295–318

    Article  PubMed  CAS  Google Scholar 

  24. AMAP (2002) AMAP assessment human health in the Arctic. Arctic monitoring and assessment programme (AMAP). http://amap.no/documents/index.cfm

  25. Dolamore BA, Brown J, Darlow BA, George PM, Sluis KB, Winterbourn CC (1992) Selenium status of Christchurch infants and the effect of diet. N Z Med J 105:139–142

    PubMed  CAS  Google Scholar 

  26. Lee AM, Huel G, Godin J, Hellier G, Sahuquillo T, Moreau P (1995) Blot, inter-individual variation of selenium in maternal plasma, cord plasma and placenta. Sci Total Environ 150:119–127

    Google Scholar 

  27. Dobrzynski W, Trafikowska U, Trafikowska A, Pilecki A, Szymanski W, Zachara BA (1998) Decreased selenium concentration in maternal and cord blood in preterm compared to term deliveries. Analyst 123:93–97

    Article  PubMed  CAS  Google Scholar 

  28. Walkera JB, Housemanb J, Seddonc L, McMullend E, Tofflemireb K, Millsc C, Corriveaue A, Weberf JP, LeBlancf A, Walkerg M, Donaldsong SG, Oostdamg JV (2006) Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environ Res 100:295–318

    Article  CAS  Google Scholar 

  29. Osada H, Watanabe Y, Nishimura Y, Yukawa M, Seki K (2002) Profile of trace element concentrations in the feto-placental unit in relation to fetal growth. Acta Obstet Gynecol Scand 81:931–937

    Article  PubMed  Google Scholar 

  30. Rhead WE, Cary EE, Allaway WH, Saltzstein SL, Schrauzer GN (1972) The vitamin E and selenium status of infants and the sudden infant death syndrome. Bioinorg Chem 1:289–294

    Article  Google Scholar 

  31. Bianchi MLP, Cruz A, Zanettti MA, Dorea JG (1999) Dietary intake of selenium and its concentration in breast milk. Biol Trace Elem Res 70:273–277

    Article  PubMed  CAS  Google Scholar 

  32. Zachara BA, Pilecki A (2000) Selenium concentration in the milk of breast-feeding mothers and its geographic distribution. Environ Health Perspect 108:1043–1046

    Article  PubMed  CAS  Google Scholar 

  33. Brätter P, Negreti de Bratter VE, Recknagel S, Brunetto R (1997) Maternal selenium status influences the concentration and binding pattern of zinc in human milk. J Trace Elem Med Biol 11:203–209

    PubMed  Google Scholar 

  34. Al-Awadi FM, Srikumar TS (2001) Determination of selenium concentration its chemical forms in the milk of Kuwaiti and non-Kuwaiti lactating mothers. Nutrition 16:1069–1073

    Article  Google Scholar 

  35. Arnaud J, Prual A, Preziosi P, Favier A, Galan P, Hercberg S (1993) Selenium determination in human milk in Niger: influence of maternal status. J Trace Elem Electrolytes Health Dis 7:199–204

    PubMed  CAS  Google Scholar 

  36. Moore MA, Wander RC, Xia YM, Du SH, Butler JA, Whanger PD (2000) Selenium supplementation of Chinese women with habitually low selenium intake increases plasma selenium, plasma glutathione peroxidase activity and milk selenium, but not milk glutathione peroxidase activity. J Nutr Biochem 11:341–347

    Article  PubMed  CAS  Google Scholar 

  37. Moore C, Negrusz A, Lewis D (1998) Determination of drug abuse in meconium. J Chromatogr B 713:137–146

    Article  CAS  Google Scholar 

  38. Kumpulainen J, Salmenpare L, Siimes MA, Koivistoinen P, Perhenntupa J (1985) Selenium statues of exclusively breastfed infants as influenced by maternal organic and inorganic selenium supplementation. Am J Clin Nutr 42:829–835

    PubMed  CAS  Google Scholar 

  39. Levander OA, Moser PB, Morris VC (1987) Dietary selenium intake and selenium concentrations of plasma, erythrocytes, and breast milk in pregnant and postpartum lactating and nonlactating women. Am J Clin Nutr 46:694–698

    PubMed  CAS  Google Scholar 

  40. Higashi A, Tamari H, Kuroki Y, Matsuda I (1983) Longitudinal changes in selenium content of breast milk. Acta Paediatr Scand 72:433–436

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Karadas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özdemir, H.S., Karadas, F., Pappas, A.C. et al. The Selenium Levels of Mothers and Their Neonates Using Hair, Breast Milk, Meconium, and Maternal and Umbilical Cord Blood in Van Basin. Biol Trace Elem Res 122, 206–215 (2008). https://doi.org/10.1007/s12011-008-8088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8088-9

Keywords

Navigation