Skip to main content
Log in

miR-221/222 Promote Endothelial Differentiation of Adipose-Derived Stem Cells by Regulation of PTEN/PI3K/AKT/mTOR Pathway

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Adipose-derived stem cells (ADSCs) are a type of adult mesenchymal stem cell that show a repair effect on ischemic tissues owing to their capacity for endothelial differentiation. MicroRNA-221/222 (miR-221/222) has been extensively studied in endothelial cells (ECs). However, the mechanism that regulates ADSCs differentiation into ECs remains unknown. In this study, we investigated the effects of miR-221/222-overexpression/silence in ADSCs on endothelial differentiation by constructing lentiviral vectors. Differentiation capacity was assessed by measuring the expression of endothelial markers (CD31, CD34, and CD144). In addition, low-density lipoprotein (LDL) uptake and tube-like formation were performed for evaluation of functional characterization. The PTEN/PI3K/AKT/mTOR signaling pathway was investigated using western blotting to clarify the action mechanism of this gene. The revascularization of miR-221/222-transfeted ADSCs was further verified in a rat hind limb ischemia model. The results confirmed that transfection with miR-221/222 promoted the expression of endothelial markers, LDL uptake, and tube-like formation. As expected, the PI3K/AKT signaling pathway was effectively activated when ADSCs showed high expression of miR-221/222 during endothelial differentiation. Furthermore, injection of miR-221/222 transfected ADSCs significantly improved rat hindlimb ischemia, as evidenced by increased blood flow and structural integrity and reduce inflammatory infiltration. The results of this study suggest that miR-221/222 is essential for endothelial differentiation of ADSCs and provides a novel strategy for modulating vascular formation and ischemic tissue regeneration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Amini-Farsani, Z., Sangtarash, M. H., Shamsara, M., & Teimori, H. (2018). MiR-221/222 promote chemoresistance to cisplatin in ovarian cancer cells by targeting PTEN/PI3K/AKT signaling pathway. Cytotechnology, 70, 203–213.

    Article  CAS  PubMed  Google Scholar 

  2. Barui, A. K., Nethi, S. K., Basuthakur, P., Jhelum, P., Bollu, V. S., Reddy, B. R., Chakravarty, S., & Patra, C. R. (2021). Therapeutic angiogenesis using zinc oxide nanoflowers for the treatment of hind limb ischemia in a rat model. Biomedical Materials, 16, 044103.

  3. Celicit, T., Meuth, V. M., Six, I., Massy, Z. A., & Metzinger, L. (2017). The mir-221/222 cluster is a key player in vascular biology via the fine-tuning of endothelial cell physiology. Current Vascular Pharmacology, 15, 40–46.

    Google Scholar 

  4. Chen, J., Zhang, X., Liu, X., Zhang, C., Shang, W., Xue, J., Chen, R., Xing, Y., Song, D., & Xu, R. (2019). Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. European Journal of Pharmacology, 856, 172418.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, T., Ye, B., Tan, J., Yang, H., He, F., & Khalil, R. A. (2021). (CD146+)Mesenchymal stem cells treatment improves vascularization, muscle contraction and VEGF expression, and reduces apoptosis in rat ischemic hind limb. Biochemical Pharmacology, 190, 114530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, Y., Shen, H., Ding, Y., Yu, Y., Shao, L., & Shen, Z. (2021). The application of umbilical cord-derived MSCs in cardiovascular diseases. Journal of Cellular and Molecular Medicine, 25, 8103–8114.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chiang, K. J., Chiu, L. C., Kang, Y. N., & Chen, C. (2021). Autologous stem cell therapy for chronic lower extremity wounds: A meta-analysis of randomized controlled trials. Cells, 10, 3307.

  8. Chistiakov, D. A., Sobenin, I. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Human miR-221/222 in physiological and atherosclerotic vascular remodeling. BioMed Research International, 2015, 1–18.

    Article  Google Scholar 

  9. Cho, H. M., & Cho, J. Y. (2021). Cardiomyocyte death and genome-edited stem cell therapy for ischemic heart disease. Stem Cell Reviews and Reports, 17, 1264–1279.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cui, J., Zhang, F., Wang, Y., Liu, J., Ming, X., Hou, J., Lv, B., Fang, S., & Yu, B. (2016). Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. International Journal of Molecular Medicine, 37, 1299–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Di Bernardini, E., Campagnolo, P., Margariti, A., Zampetaki, A., Karamariti, E., Hu, Y., & Xu, Q. (2014). Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-beta2) pathways. Journal of Biological Chemistry, 289, 3383–3393.

    Article  PubMed  Google Scholar 

  12. Fu, X., Liu, G., Halim, A., Ju, Y., Luo, Q., & Song, A. G. (2019). Mesenchymal stem cell migration and tissue repair. Cells, 8, 784.

  13. Gan, K., Dong, G. H., Wang, N., & Zhu, J. F. (2020). miR-221-3p and miR-222-3p downregulation promoted osteogenic differentiation of bone marrow mesenchyme stem cells through IGF-1/ERK pathway under high glucose condition. Diabetes Research and Clinical Practice, 167, 108121.

    Article  CAS  PubMed  Google Scholar 

  14. Gao, L., Yi, M., Xing, M., Li, H., Zhou, Y., Xu, Q., Zhang, Z., Wen, Z., & Chang, J. (2020). In situ activated mesenchymal stem cells (MSCs) by bioactive hydrogels for myocardial infarction treatment. Journal of Materials Chemistry B, 8, 7713–7722.

    Article  CAS  PubMed  Google Scholar 

  15. Konoplyannikov, M., Kotova, S., Baklaushev, V., Konoplyannikov, A., Kalsin, V., Timashev, P., & Troitskiy, A. (2018). Mesenchymal stem cell therapy for ischemic heart disease: Advances and challenges. Current Pharmaceutical Design, 24, 3132–3142.

    Article  CAS  PubMed  Google Scholar 

  16. Lai, T. C., Lee, T. L., Chang, Y. C., Chen, Y. C., Lin, S. R., Lin, S. W., Pu, C. M., Tsai, J. S., & Chen, Y. L. (2020). MicroRNA-221/222 mediates ADSC-exosome-induced cardioprotection against ischemia/reperfusion by targeting PUMA and ETS-1. Frontiers in Cell and Developmental Biology, 8, 569150.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee, J. Y., Kim, M., Heo, H. R., Ha, K. S., Han, E. T., Park, W. S., Yang, S. R., & Hong, S. H. (2018). Inhibition of MicroRNA-221 and 222 enhances hematopoietic differentiation from human pluripotent stem cells via c-KIT Upregulation. Molecules and Cells, 41, 971–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, J., Liu, W., & Yao, W. (2019). Immortalized human bone marrow derived stromal cells in treatment of transient cerebral ischemia in rats. Journal of Alzheimer’s Disease, 69, 871–880.

    Article  CAS  PubMed  Google Scholar 

  19. Lin, Y. P., Liao, L. M., Liu, Q. H., Ni, Y., Zhong, Y., & Yu, S. (2021). MiRNA-128-3p induces osteogenic differentiattion of bone marrow mesenchymal stem cells via activating the Wnt3a signaling. European Review for Medical and Pharmacological Sciences, 25, 1225–1232.

    PubMed  Google Scholar 

  20. Liu, H. T., & Fan, W. X. (2022). MiRNA-1246 suppresses the proliferation and migration of renal cell carcinoma through targeting CXCR4. European Review for Medical and Pharmacological Sciences, 24, 5979–5987.

    Google Scholar 

  21. Liu, X., Cheng, Y., Yang, J., Xu, L., & Zhang, C. (2012). Cell-specific effects of miR-221/222 in vessels: Molecular mechanism and therapeutic application. Journal of Molecular and Cellular Cardiology, 52, 245–255.

    Article  CAS  PubMed  Google Scholar 

  22. Qin, B., Cao, Y., Yang, H., Xiao, B., & Lu, Z. (2015). MicroRNA-221/222 regulate ox-LDL-induced endothelial apoptosis via Ets-1/p21 inhibition. Molecular and Cellular Biochemistry, 405, 115–124.

    Article  CAS  PubMed  Google Scholar 

  23. Rocha, R., Torres, A., Ojeda, K., Uribe, D., Rocha, D., Erices, J., Niechi, I., Ehrenfeld, P., San Martin, R., & Quezada, C. (2018). The adenosine A(3) receptor regulates differentiation of glioblastoma stem-like cells to endothelial cells under hypoxia. International Journal of Molecular Sciences, 19, 1228.

  24. Skarn, M., Namlos, H. M., Noordhuis, P., Wang, M. Y., Meza-Zepeda, L. A., & Myklebost, O. (2012). Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells and Development, 21, 873–883.

    Article  CAS  PubMed  Google Scholar 

  25. Song, B. Q., Chi, Y., Li, X., Du, W. J., Han, Z. B., Tian, J. J., Li, J. J., Chen, F., Wu, H. H., Han, L. X., Lu, S. H., Zheng, Y. Z., & Han, Z. C. (2015). Inhibition of notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cellular Physiology and Biochemistry, 36, 1991–2002.

    Article  CAS  PubMed  Google Scholar 

  26. Strassheim, D., Verin, A., Batori, R., Nijmeh, H., Burns, N., Kovacs-Kasa, A., Umapathy, N. S., Kotamarthi, J., Gokhale, Y. S., Karoor, V., Stenmark, K. R., & Gerasimovskaya, E. (2020). P2Y purinergic receptors, endothelial dysfunction, and cardiovascular diseases. International Journal of Molecular Sciences, 21, 6855.

  27. Xie, H., Wang, F., Chen, X., & Ying, H. (2018). miR126 is essential for endothelial phenotype expression during endothelial differentiation in adipose derived stem cells. Molecular Medicine Reports, 17, 442–446.

    CAS  PubMed  Google Scholar 

  28. Xu, C. H., Liu, Y., Xiao, L. M., Chen, L. K., Zheng, S. Y., Zeng, E. M., Li, D. H., & Li, Y. P. (2019). Silencing microRNA-221/222 cluster suppresses glioblastoma angiogenesis by suppressor of cytokine signaling-3-dependent JAK/STAT pathway. Journal of Cellular Physiology, 234, 22272–22284.

    Article  CAS  PubMed  Google Scholar 

  29. Zhai, L., Liu, Y., Zhao, W., Chen, Q., Guo, T., Wei, W., Luo, Z., Huang, Y., Ma, C., Huang, F., & Dai, X. (2020). Aerobic and resistance training enhances endothelial progenitor cell function via upregulation of caveolin-1 in mice with type 2 diabetes. Stem Cell Research & Therapy, 11, 10.

    Article  CAS  Google Scholar 

  30. Zhang, K., Yang, X., Zhao, Q., Li, Z., Fu, F., Zhang, H., Zheng, M., & Zhang, S. (2020). Molecular mechanism of stem cell differentiation into adipocytes and adipocyte differentiation of malignant tumor. Stem Cells International, 2020, 8892300.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, X., Jiang, Y., Huang, Q., Wu, Z., Pu, H., Xu, Z., Li, B., Lu, X., Yang, X., Qin, J., & Peng, Z. (2021). Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem Cell Research & Therapy, 12, 403.

    Article  CAS  Google Scholar 

  32. Zhang, X., Mao, H., Chen, J. Y., Wen, S., Li, D., Ye, M., & Lv, Z. (2013). Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway. Biochemical and Biophysical Research Communications, 431, 404–408.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, X., Sun, W., Guo, B., & Cui, L. (2022). Circular RNA BIRC6 depletion promotes osteogenic differentiation of periodontal ligament stem cells via the miR-543/PTEN/PI3K/AKT/mTOR signaling pathway in the inflammatory microenvironment. Stem Cell Research & Therapy, 13, 417.

    Article  CAS  Google Scholar 

  34. Zhou, C. F., Ma, J., Huang, L., Yi, H. Y., Zhang, Y. M., Wu, X. G., Yan, R. M., Liang, L., Zhong, M., Yu, Y. H., Wu, S., & Wang, W. (2019). Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene, 38, 1256–1268.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, L., Niu, X., Liang, J., Li, J., Li, J., Cheng, Y., Meng, Y., Wang, Q., Yang, X., Wang, G., Shi, Y., Dang, E., & Zhang, K. (2018). Efficient differentiation of vascular endothelial cells from dermal-derived mesenchymal stem cells induced by endothelial cell lines conditioned medium. Acta Histochemica, 120, 734–740.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of Anhui Province (2008085QH417 and 2108085QH333), the Natural Science Foundation of China (82103755), the Innovation program for Returned Overseas Chinese Scholars of Anhui Province (2021LCX027), and the College Students’ innovation and entrepreneurship training program (S202110367040 and 202210367034).

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of integrity of the entire study: Yu-shuai Wang; study concepts: Wei Gao; study design: Yu-shuai Wang; definition of intellectual content: Wei Gao; experimental studies: Wei Gao, Limin Yuan, and Yue Si; literature research: Yue Zhang; data analysis: Yue Si and Tianci Lv; manuscript preparation: Wei Gao; manuscript review: Yue Zhang.

Corresponding author

Correspondence to Yu-shuai Wang.

Ethics declarations

Ethical Approval

All animal experimental procedures were conducted under the approval of the Institution Animal Ethical Committee of Bengbu Medical College (BBMC2019120).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 202 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Yuan, L., Zhang, Y. et al. miR-221/222 Promote Endothelial Differentiation of Adipose-Derived Stem Cells by Regulation of PTEN/PI3K/AKT/mTOR Pathway. Appl Biochem Biotechnol 195, 4196–4214 (2023). https://doi.org/10.1007/s12010-023-04335-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04335-x

Keywords

Navigation