Skip to main content
Log in

Evaluation of Bioactive Attributes and Emulsification Potential of Exopolysaccharide Produced by a Brown-rot Fungus Fomitopsis meliae AGDP-2

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mushrooms possess wide array of biologically active secondary metabolites and have been traditionally used for their medicinal properties. Exopolysaccharide (EPS) is one of such bioactive metabolites. The bioactive attributes and emulsification capabilities of the exopolysaccharides produced by a novel brown-rot fungus Fomitopsis meliae AGDP-2 under submerged fermentation has been thoroughly investigated in the present study. Exopolysaccharide displayed anti-oxidant activities in dose dependent manner with the maximum scavenging of ABTS radicals (42.45%), DPPH radicals (75.34%), Hydroxyl radicals (63.64%), Superoxide anion radical (76.54%) and Ferric Reducing Antioxidant Power with IC50 value of 231 µg/mL. Additionally, evaluation of anti-proliferative properties revealed that EPS significantly inhibited the proliferation of HepG2 and HT-29 cancer cells followed by moderate inhibition of HeLa and MCF-7 cancer cell lines and quite less inhibition of L-132 and KB cell lines. The IC50 values of EPS for the abovementioned cell lines are 9.465 µg/mL, 11.25 µg/mL, 38.98 µg/mL, 87.78 µg/mL, 2061 µg/mL and 2361 µg/mL respectively. Moreover EPS also possess good anti-microbial as well as anti-biofilm properties. The studies on emulsification potential described that EPS is good emulsifier of different vegetable oils and the emulsion formed was quite stable up to 144 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this published article.

References

  1. Andhare, P., Delattre, C., Pierre, G., Michaud, P., & Pathak, H. (2017). Characterization and rheological behaviour analysis of the succinoglycan produced by Rhizobium radiobacter strain CAS from curd sample. Food Hydrocol, 64, 1–8. https://doi.org/10.1016/j.foodhyd.2016.10.008.

    Article  CAS  Google Scholar 

  2. Luo, D., Wang, Z., & Nie, K. (2019). Structural characterization of a novel polysaccharide from Sargassum thunbergii and its antioxidant and anti-inflammation effects. Plos one, 14(10), e0223198. https://doi.org/10.1371/journal.pone.0223198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jia, X., Liang, Y., Zhang, C., Wang, K., Tu, Y., Chen, M., Li, P., Wan, J. B., & He, C. (2018). Polysaccharide PRM3 from Rhynchosia minima root enhances immune function through TLR4-NF-κB pathway. Biochim Biophys Acta Gen Subj BBA-GEN SUBJECTS, 1862(8), 1751–1759. https://doi.org/10.1016/j.bbagen.2018.05.012.

    Article  CAS  Google Scholar 

  4. Wang, Y., Ji, X., Yan, M., Chen, X., Kang, M., Teng, L., Wu, X., Chen, J., & Deng, C. (2019). Protective effect and mechanism of polysaccharide from Dictyophora indusiata on dextran sodium sulfate-induced colitis in C57BL/6 mice. International Journal Of Biological Macromolecules, 140, 973–984. https://doi.org/10.1016/j.ijbiomac.2019.08.198.

    Article  CAS  PubMed  Google Scholar 

  5. Khademi, F., Taheri, R. A., Avarvand, A. Y., Vaez, H., Momtazi-Borojeni, A. A., & Soleimanpour, S. (2018). Are chitosan natural polymers suitable as adjuvant/delivery system for anti-tuberculosis vaccines? Microbial Pathogenesis, 121, 218–223. https://doi.org/10.1016/j.micpath.2018.05.035.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, C., Feng, Q., Liao, H., Yu, X., Liu, Y., & Wang, D. (2019). Anti-diabetic nephropathy activities of polysaccharides obtained from Termitornyces albuminosus via regulation of NF-κB signaling in db/db mice. International Journal Of Molecular Sciences, 20(20), 5205. https://doi.org/10.3390/ijms20205205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chertkov, K. S., Davydova, S. A., Nesterova, T. A., Zviagintseva, T. N., & Eliakova, L. A. (1999). Efficiency of polysaccharide translam for early treatment of acute radiation illness. Radiatsionnaia biologiia radioecologiia, 39(5), 572–577.

    CAS  PubMed  Google Scholar 

  8. Jouault, S. C., Chevolot, L., Helley, D., Ratiskol, J., Bros, A., Sinquin, C., Roger, O., & Fischer, A. M. (2001). Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochim Biophys Acta Gen Subj BBA-GEN SUBJECTS, 1528(2–3), https://doi.org/10.1016/S0304-4165(01)00185-4. 141 – 51.

  9. Yin, Y. G., Han, Y. Z., & Ding,H. W (2006). Review on advancement of animal polysaccharides. Food Sci, 27(3), 257–262.

    Google Scholar 

  10. Liu, J., Willför, S., & Xu, C. (2015). A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre, 5(1), 31–61. https://doi.org/10.1016/j.bcdf.2014.12.001.

    Article  CAS  Google Scholar 

  11. Warren, R. A. (1996). Microbial hydrolysis of polysaccharides. Annual Rev Microbiol, 50(1), 183–212.

    Article  CAS  Google Scholar 

  12. Zhang, J., Wen, C., Duan, Y., Zhang, H., & Ma, H. (2019). Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. International Journal Of Biological Macromolecules, 132, 906–914. https://doi.org/10.1016/j.ijbiomac.2019.04.020.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng, J. J., Lin, C. Y., Lur, H. S., Chen, H. P., & Lu, M. K. (2008). Properties and biological functions of polysaccharides and ethanolic extracts isolated from medicinal fungus, Fomitopsis pinicola. Process Biochemistry, 43(8), 829–834. https://doi.org/10.1016/j.procbio.2008.03.005.

    Article  CAS  Google Scholar 

  14. Choi, D., Park, S. S., Ding, J. L., & Cha, W. S. (2007). Effects of Fomitopsis pinicola extracts on antioxidant and antitumor activities. Biotechnol Bioprocess Engi, 12(5), 516. https://doi.org/10.1007/BF02931349.

    Article  CAS  Google Scholar 

  15. Arnao, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food chemistry, 73(2), 239–244. https://doi.org/10.1016/S0308-8146(00)00324-1.

    Article  CAS  Google Scholar 

  16. Prajapati, D., Bhatt, A., & Gupte, A. (2022). Purification and physicochemical characterization of exopolysaccharide produced by a novel brown-rot fungus Fomitopsis meliae AGDP-2.Journal of Applied Biology and Biotechnology.

  17. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  18. Baskar, G., Rajesh, L. S., & Renganathan, S. (2011). Statistical screening and optimization of exo-polysaccharide production by medicinal mushroom using design of experiments. Biotechnol Bioinforma Bioengi, 1, 47–58.

    Google Scholar 

  19. Yang, X., Yang, S., Guo, Y., Jiao, Y., & Zhao, Y. (2013). Compositional characterisation of soluble apple polysaccharides, and their antioxidant and hepatoprotective effects on acute CCl4-caused liver damage in mice. Food Chemistry, 138(2–3), 1256–1264. https://doi.org/10.1016/j.foodchem.2012.10.030.

    Article  CAS  PubMed  Google Scholar 

  20. Oyetayo, V., Dong, C. H., & Yao, Y. J. (2009). Antioxidant and antimicrobial properties of aqueous extract from Dictyophora indusiata. The Open Mycol J, 3(1), https://doi.org/10.2174/1874437000903010020.

  21. Wang, J., Zhao, X., Yang, Y., Zhao, A., & Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal Of Biological Macromolecules, 74, 119–126. https://doi.org/10.1016/j.ijbiomac.2014.12.006.

    Article  CAS  PubMed  Google Scholar 

  22. Kielak, A. M., Castellane, T. C., Campanharo, J. C., Colnago, L. A., Costa, O. Y., da Silva, M. L., van Veen, J. A., Lemos, E. G., & Kuramae, E. E. (2017). Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Scientific Rep, 7(1), 1–1. https://doi.org/10.1038/srep41193.

    Article  CAS  Google Scholar 

  23. Sun, Y., Yang, B., Wu, Y., Liu, Y., Gu, X., Zhang, H., Wang, C., Cao, H., Huang, L., & Wang, Z. (2015). Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chemistry, 178, 311–318. https://doi.org/10.1016/j.foodchem.2015.01.105.

    Article  CAS  PubMed  Google Scholar 

  24. Liang, T. W., Tseng, S. C., & Wang, S. L. (2016). Production and characterization of antioxidant properties of exopolysaccharide (s) from Peanibacillus mucilaginosus TKU032. Marine Drugs, 14(2), 40. https://doi.org/10.3390/md14020040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zou, C., Du, Y., Li, Y., Yang, J., Feng, T., Zhang, L., & Kennedy, J. F. (2008). Preparation of lacquer polysaccharide sulfates and their antioxidant activity in vitro. Carbohydrate Polymers, 73(2), 322–331. https://doi.org/10.1016/j.carbpol.2007.11.035.

    Article  CAS  Google Scholar 

  26. Zhu, Y., Wang, C., Jia, S., Wang, B., Zhou, K., Chen, S., Yang, Y., & Liu, S. (2018). Purification, characterization and antioxidant activity of the exopolysaccharide from Weissella cibaria SJ14 isolated from Sichuan paocai. International Journal Of Biological Macromolecules, 115, 820–828. https://doi.org/10.1016/j.carbpol.2007.11.035.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, T., Xu, P., Zong, S., Wang, Y., Su, N., & Ye, M. (2017). Purification, structural features, antioxidant and moisture-preserving activities of an exopolysaccharide from Lachnum YM262. Bioorganic & Medicinal Chemistry Letters, 27(5), 1225–1232. https://doi.org/10.1016/j.bmcl.2017.01.063.

    Article  CAS  Google Scholar 

  28. Gackowski, D., Banaszkiewicz, Z., Rozalski, R., Jawien, A., & Olinski, R. (2002). Persistent oxidative stress in colorectal carcinoma patients. International Journal Of Cancer, 101(4), 395–397. https://doi.org/10.1002/ijc.10610.

    Article  CAS  PubMed  Google Scholar 

  29. Schumacker, P. T. (2006). Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell, 10(3), 175–176. https://doi.org/10.1016/j.ccr.2006.08.015.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, W., Yin, D., Li, N., Hou, X., Wang, D., Li, D., & Liu, J. (2016). Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Scientific Rep, 6(1), 1–8. https://doi.org/10.1038/srep28591.

    Article  CAS  Google Scholar 

  31. Trabelsi, I., Ktari, N., Slima, S. B., Triki, M., Bardaa, S., Mnif, H., & Salah, R. B. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. International Journal Of Biological Macromolecules, 103, 194–201. https://doi.org/10.1016/j.ijbiomac.2017.05.017.

    Article  CAS  PubMed  Google Scholar 

  32. Thetsrimuang, C., Khammuang, S., Chiablaem, K., Srisomsap, C., & Sarnthima, R. (2011). Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lév. Food Chemistry, 128(3), 634–639. https://doi.org/10.1016/j.foodchem.2011.03.077.

    Article  CAS  Google Scholar 

  33. Si, J., Meng, G., Wu, Y., Ma, H. F., Cui, B. K., & Dai, Y. C. (2019). Medium composition optimization, structural characterization, and antioxidant activity of exopolysaccharides from the medicinal mushroom Ganoderma lingzhi. International Journal Of Biological Macromolecules, 124, 1186–1196. https://doi.org/10.1016/j.ijbiomac.2018.11.274.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, P., Yuan, L., Cai, D., Jiao, L., & Zhang, L. (2015). Characterization and antioxidant activities of the polysaccharides from mycelium of Phellinus pini and culture medium. Carbohydrate Polymers, 117, 600–604. https://doi.org/10.1016/j.carbpol.2014.10.013.

    Article  CAS  PubMed  Google Scholar 

  35. Mahdhi, A., Leban, N., Chakroun, I., Chaouch, M. A., Hafsa, J., Fdhila, K., Mahdouani, K., & Majdoub, H. (2017). Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation. Microbial Pathogen. https://doi.org/10.1016/j.micpath.2017.05.046. 214 – 20.

    Article  Google Scholar 

  36. Kim, I. G., Jung, I. L., Oh, T. J., Kim, K. C., & Shim, H. W. (2002). Polysaccharide-enriched fraction isolated from Duchesnea chrysantha protects against oxidative damage. Biotechnology Letters, 24(16), 1299–1305. https://doi.org/10.1023/A:1019812202099.

    Article  CAS  Google Scholar 

  37. Shi, M., Zhang, Z., & Yang, Y. (2013). Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP). Carbohydrate Polymers, 95(1), 200–206. https://doi.org/10.1016/j.carbpol.2013.02.081.

    Article  CAS  PubMed  Google Scholar 

  38. Ren, D., Jiao, Y., Yang, X., Yuan, L., Guo, J., & Zhao, Y. (2015). Antioxidant and antitumor effects of polysaccharides from the fungus Pleurotus abalonus. Chemico-biol Interact, 237, 166–174. https://doi.org/10.1016/j.cbi.2015.06.017.

    Article  CAS  Google Scholar 

  39. Fooladi, T., Soudi, M. R., Alimadadi, N., & Savedoroudi, P. (2019). Bioactive exopolysaccharide from Neopestalotiopsis sp. strain SKE15: Production, characterization and optimization. International Journal Of Biological Macromolecules, 129, 127–139. https://doi.org/10.1016/j.ijbiomac.2019.01.203.

    Article  CAS  PubMed  Google Scholar 

  40. Pietta, P. G. (2000). Flavonoids as antioxidants. Journal Of Natural Products, 63(7), 1035–1042. https://doi.org/10.1021/np9904509.

    Article  CAS  PubMed  Google Scholar 

  41. Naguib, Y. M. (2000). Antioxidant activities of astaxanthin and related carotenoids. J Agricul Food Chem, 48(4), 1150–1154. https://doi.org/10.1021/jf991106k.

    Article  CAS  Google Scholar 

  42. Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292.

    Article  CAS  PubMed  Google Scholar 

  43. Abdullah, N., Ismail, S. M., Aminudin, N., Shuib, A. S., & Lau, B. F. (2012). Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evidence-Based Complement Alternat. Med 2012. https://doi.org/10.1155/2012/464238

  44. Dertli, E., Mayer, M. J., & Narbad, A. (2015). Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. Bmc Microbiology, 15(1), 1–9. https://doi.org/10.1186/s12866-015-0347-2.

    Article  CAS  Google Scholar 

  45. Rajoka, M. S., Mehwish, H. M., Zhang, H., Ashraf, M., Fang, H., Zeng, X., Wu, Y., Khurshid, M., Zhao, L., & He, Z. (2020). Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids and Surfaces B: Biointerfaces, 186, 110734. https://doi.org/10.1016/j.colsurfb.2019.110734.

    Article  CAS  Google Scholar 

  46. Al Kassaa, I., Hober, D., Hamze, M., Chihib, N. E., & Drider, D. (2014). Antiviral potential of lactic acid bacteria and their bacteriocins. Probiot Antimicrob Prot, 6(3–4), https://doi.org/10.1007/s12602-014-9162-6. 177 – 85.

  47. Abdalla, A. K., Ayyash, M. M., Olaimat, A. N., Osaili, T. M., Al-Nabulsi, A. A., Shah, N. P., & Holley, R. (2021). Exopolysaccharides as Antimicrobial Agents: Mechanism and Spectrum of Activity. Frontiers Microbiol, 12, https://doi.org/10.3389/fmicb.2021.664395.

  48. Osińska-Jaroszuk, M., Jaszek, M., Mizerska-Dudka, M., Błachowicz, A., Rejczak, T. P., Janusz, G., Wydrych, J., Polak, J., Jarosz-Wilkołazka, A., & Kandefer-Szerszeń, M. (2014). Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. BioMed. Res. Int 2014. https://doi.org/10.1155/2014/743812

  49. Jiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y., & Yu, W. (2011). Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PloS one, 6(4), e18514. https://doi.org/10.1371/journal.pone.0018514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bernal, P., & Llamas, M. A. (2012). Promising biotechnological applications of antibiofilm exopolysaccharides. Microbial Biotechnol, 5(6), 670–673. https://doi.org/10.1111/j.1751-7915.2012.00359.x.

    Article  CAS  Google Scholar 

  51. Kavita, K., Singh, V. K., Mishra, A., & Jha, B. (2014). Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis. Carbohydrate Polymers, 101, 29–35. https://doi.org/10.1016/j.carbpol.2013.08.099.

    Article  CAS  PubMed  Google Scholar 

  52. Vinothini, G., Latha, S., Arulmozhi, M., & Dhanasekaran, D. (2019). Statistical optimization, physio-chemical and bio-functional attributes of a novel exopolysaccharide from probiotic Streptomyces griseorubens GD5. International Journal Of Biological Macromolecules, 134, 575–587. https://doi.org/10.1016/j.ijbiomac.2019.05.011.

    Article  CAS  PubMed  Google Scholar 

  53. Abdelnasser, S. M., Yahya, S. M., Mohamed, W. F., Asker, M. M., Shady, H. M. A., Mahmoud, M. G., & Gadallah, M. A. (2017). Antitumor exopolysaccharides derived from novel marine bacillus: Isolation, characterization aspect and biological activity. Asian Pacific J Cancer Preven: APJCP, 18(7), 1847. https://doi.org/10.22034/APJCP.2017.18.7.1847.

    Article  Google Scholar 

  54. You, H. J., Oh, D. K., & Ji, G. E. (2004). Anticancerogenic effect of a novel chiroinositol-containing polysaccharide from Bifidobacterium bifidum BGN4. Fems Microbiology Letters, 240(2), 131–136. https://doi.org/10.1016/j.femsle.2004.09.020.

    Article  CAS  PubMed  Google Scholar 

  55. Lee, D. K., Jang, S., Kim, M. J., Kim, J. H., Chung, M. J., Kim, K. J., & Ha, N. J. (2008). Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines. Bmc Cancer, 8(1), 1–8. https://doi.org/10.1186/1471-2407-8-310.

    Article  Google Scholar 

  56. Goyzueta-Mamani, L. D., de Carvalho, J. C., Magalhães, A. I. Jr., & Soccol, C. R. (2021). Production of arachidonic acid by Mortierella alpina using wastes from potato chips industry. Journal Of Applied Microbiology, 130(5), 1592–1601.

    Article  CAS  PubMed  Google Scholar 

  57. Sahana, T. G., Sadiya, M. F., & Rekha, P. D. (2018). Emulsifying and Cell Proliferative Abilities of the Exopolysaccharide Produced by Leguminous Plant Nodule Associated Bacterium Cronobacter sp. Journal Of Polymers And The Environment, 26(8), 3382–3388. https://doi.org/10.1007/s10924-018-1223-6.

    Article  CAS  Google Scholar 

  58. Kanmani, P., Yuvaraj, N., Paari, K. A., Pattukumar, V., & Arul, V. (2011). Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresource Technology, 102(7), 4827–4833. https://doi.org/10.1016/j.biortech.2010.12.118.

    Article  CAS  PubMed  Google Scholar 

  59. Prasanna, P. H., Bell, A., Grandison, A. S., & Charalampopoulos, D. (2012). Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydrate Polymers, 90(1), 533–540. https://doi.org/10.1016/j.carbpol.2012.05.075.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge Sophisticated Instrumentation Centre for Applied Research and Testing – SICART and SAIF, IIT Bombay for providing instrumentation facility.

Funding

This study was financially supported by the University Grants Commission, New Delhi; by providing NFOBC fellowship (Student ID: 201819-NFO-2018-19-OBC-GUJ-69853). Author DP has received this research support.

Author information

Authors and Affiliations

Authors

Contributions

DP was responsible for conceptualization, methodology, acquisition of data, analysis, interpretation of data, and original drafting of manuscript; AB for material preparation, data collection, software and analysis; AG for critical revision of the manuscript and intellectual inputs and supervision of the study; All authors read and approved final manuscript.

Corresponding author

Correspondence to Akshaya Gupte.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, D., Bhatt, A. & Gupte, A. Evaluation of Bioactive Attributes and Emulsification Potential of Exopolysaccharide Produced by a Brown-rot Fungus Fomitopsis meliae AGDP-2. Appl Biochem Biotechnol 195, 2974–2992 (2023). https://doi.org/10.1007/s12010-022-04257-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04257-0

Keywords

Navigation