Skip to main content

Advertisement

Log in

Bergenin alleviates Diabetic Retinopathy in STZ-induced rats

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) is the key cause of blindness and visual impairment in diabetes patients around the world. The high levels of oxidative stress in diabetes patients cause diabetic retinopathy. In addition to being an antioxidant, Bergenin also works as an immunosuppressant, an anti-inflammatory, and anticarcinogenic against hepatocarcinoma. This study examined the effects of Bergenin on diabetic retinopathy rats, using Streptozotocin (STZ) intraperitoneally to induce diabetes in rats. The animals were divided into four groups (n = 6), including a normal control (Group I), diabetic control (Group II), Bergenin (25 mg/kg) (Group III), and metformin (350 mg/kg) (Group IV). As previously mentioned, each animal received treatment for 60 days. To induce DR, rats were administered STZ (60 mg/kg) intraperitoneally for 60 days. Standard methods were utilized to measure the body weight of rats, blood glucose levels. We measured lipid profiles (Triglycerides, cholesterol, LDL, and HDL), inflammatory markers, and antioxidant levels with their respective kits. Analysis of retinal tissue morphometry and MMP-9, VEGF, and MCP-1 levels in serum was performed. Our research examined the expression levels of target genes (TNF-α, IL-1β, and IL-6) using RT-PCR analysis. STZ-induced animals that were treated with Bergenin had less food intake, lower blood glucose, and improved body weight. Bergenin significantly suppressed levels of pro-inflammatory cytokines, cholesterol, TG, LDL, AI, MMP-9, VEGF, and MCP-1 and increased the level of HDL and antioxidant enzymes in STZ-induced DR rats. As well as increasing antioxidant levels, reducing retinal thickness, and increasing cell numbers, Bergenin also lessened DR remarkably. The results of this study demonstrated that Bergenin effectively inhibited STZ-induced DR in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data have been generated as part of the routine work.

References

  1. Szarka, G., Balogh, M., Tengölics, Á. J., Ganczer, A., Völgyi, B., & Kovács-Öller, T. (2021). The role of gap junctions in cell death and neuromodulation in the retina. Neural Regeneration Research, 16(10), 1911–1920. https://doi.org/10.4103/1673-5374.308069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Altmann, C., & Schmidt, M. H. H. (2018). The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration. International Journal of Molecular Sciences, 19(1), 110. https://doi.org/10.3390/ijms19010110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kang, Q., & Yang, C. (2020). Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biology, 37, 101799. https://doi.org/10.1016/j.redox.2020.101799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiu, C. J., & Taylor, A. (2011). Dietary hyperglycemia, glycemic index and metabolic retinal diseases. Progress in Retinal and Eye Research, 30(1), 18–53. https://doi.org/10.1016/j.preteyeres.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  5. Yi, H., Xu, D., Wu, X., Xu, F., Lin, L., & Zhou, H. (2019). Isosteviol protects free fatty acid- and high fat diet-induced hepatic injury via modulating PKC-β/p66Shc/ROS and endoplasmic reticulum stress pathways. Antioxidants & Redox Signaling, 30(17), 1949–1968. https://doi.org/10.1089/ars.2018.7521

    Article  CAS  Google Scholar 

  6. Shao, B., & Bayraktutan, U. (2014). Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase. Redox Biology, 28(2), 694–701. https://doi.org/10.1016/j.redox.2014.05.005

    Article  CAS  Google Scholar 

  7. Kany, S., Vollrath, J. T., & Relja, B. (2019). Cytokines in inflammatory disease. International journal of molecular sciences, 20(23), 6008. https://doi.org/10.3390/ijms20236008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bajracharya, G. B. (2015). Diversity, pharmacology and synthesis of bergenin and its derivatives: Potential materials for therapeutic usages. Fitoterapia, 101, 133–152. https://doi.org/10.1016/j.fitote.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  9. Patel, D., Patel, K., Kumar, R., Gadewar, M., & Tahilyani, V. (2012). Pharmacological and analytical aspects of bergenin: A concise report. Asian Pacific Journal of Tropical Disease, 2, 163–167.

    Article  CAS  Google Scholar 

  10. Liu, J., Zhang, Y., Yu, C., Zhang, P., Gu, S., Wang, G., Xiao, H., & Li, S. (2021). Bergenin inhibits bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway. Drug Development Research, 82(2), 278–286. https://doi.org/10.1002/ddr.21751

    Article  CAS  PubMed  Google Scholar 

  11. Li, X., Wang, Y., Liang, J., Bi, Z., Ruan, H., Cui, Y., et al. (2021). Bergenin attenuates bleomycin-induced pulmonary fibrosis in mice via inhibiting TGF-β1 signaling pathway. Phytotherapy Research, 35(10), 5808–5822. https://doi.org/10.1002/ptr.7239

  12. Sriset, Y., Chatuphonprasert, W., & Jarukamjorn, K. (2021). Bergenin attenuates sodium selenite-induced hepatotoxicity via improvement of hepatic oxidant-antioxidant balance in HepG2 cells and ICR mice. Journal of Biologically Active Products from Nature, 11(2), 97–115. https://doi.org/10.1080/22311866.2021.1908162

    Article  CAS  Google Scholar 

  13. Bastikar, V.A., Bastikar, A., Gupta, P.P, Pai, S.R., Chhajed S.S. (2021) Target related in silico analysis of Bergenin and tuberculosis management. Biomedicine [Internet]. 2021Jan.1 [cited 2021Sep.15];40(4):474- 481. Available from: https://biomedicineonline.org/index.php/home/article/view/322

  14. Zhang, G., Wang, H., Zhang, Q., Zhao, Z., Zhu, W., & Zuo, X. (2021). Bergenin alleviates H2 O2 -induced oxidative stress and apoptosis in nucleus pulposus cells: Involvement of the PPAR-γ/NF-κB pathway. Environmental Toxicology. https://doi.org/10.1002/tox.23368

    Article  PubMed  PubMed Central  Google Scholar 

  15. Suryavanshi, S. V., & Kulkarni, Y. A. (2017). NF-κβ: A potential target in the management of vascular complications of diabetes. Frontiers in Pharmacology, 8, 798. https://doi.org/10.3389/fphar.2017.00798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y., Sun, X. B., Lu, H. E., Wang, F., & Fan, X. H. (2017). Effect of luteoin in delaying cataract in STZ-induced diabetic rats. Archives of Pharmacal Research, 40(1), 88–95.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao, D., Jin, K., Qiu, S., Lei, Q., Huang, W., Chen, H., Su, J., Xu, Q., Xu, Z., Gou, B., Tie, X., Liu, F., Liu, S., Liu, Y., & Xiang, M. (2021). In vivo regeneration of ganglion cells for vision restoration in mammalian retinas. Frontiers in Cell and Developmental Biology, 4(9), 755544. https://doi.org/10.3389/fcell.2021.755544

    Article  Google Scholar 

  18. Lee, R., Wong, T. Y., & Sabanayagam, C. (2015). Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond)., 30(2), 17. https://doi.org/10.1186/s40662-015-0026-2

    Article  Google Scholar 

  19. Wang, W., & Lo, A. C. Y. (2018). Diabetic retinopathy: Pathophysiology and treatments. International Journal of Molecular Sciences, 19(6), 1816. https://doi.org/10.3390/ijms19061816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wong, T. Y., Cheung, C. M., Larsen, M., Sharma, S., & Simo, R. (2016). Diabetic retinopathy. Nature Reviews Disease Primers, 2, 16012.

    Article  PubMed  Google Scholar 

  21. Chawla, A., Chawla, R., & Jaggi, S. (2016). Microvascular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab., 20(4), 546–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. AlSharari, S. D., Al-Rejaie, S. S., Abuohashish, H. M., Aleisa, A. M., Parmar, M. Y., & Mohammed, M. A. (2014). Ameliorative potential of morin in streptozotocin-induced neuropathic pain in rats. Tropical Journal of Pharmaceutical Research, 13(9), 1429–1436.

    Article  CAS  Google Scholar 

  23. Forrester, J. V., Kuffova, L., & Delibegovic, M. (2020). The role of inflammation in diabetic retinopathy. Frontiers in Immunology, 11, 583687. https://doi.org/10.3389/fimmu.2020.583687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koleva-Georgieva, D. N., Sivkova, N. P., & Terzieva, D. (2011). Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy. Folia Med (Plovdiv), 53(2), 44–50. https://doi.org/10.2478/v10153-010-0036-8

    Article  PubMed  Google Scholar 

  25. Doganay, S., Evereklioglu, C., Er, H., et al. (2002). Comparison of serum NO, TNF-α, IL-1β, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye, 16, 163–170. https://doi.org/10.1038/sj.eye.6700095

    Article  CAS  PubMed  Google Scholar 

  26. Huang, H., Gandhi, J. K., Zhong, X., Wei, Y., Gong, J., Duh, E. J., Vinores, S. A. (2011). TNFalpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Investigative Ophthalmology & Visual Science, 52(3), 1336–44. https://doi.org/10.1167/iovs.10-5768

  27. Meleth, A. D., Agrón, E., Chan, C. C., Reed, G. F., Arora, K., Byrnes, G., Csaky, K. G., Ferris, F. L., 3rd., & Chew, E. Y. (2005). Serum inflammatory markers in diabetic retinopathy. Investigative Ophthalmology & Visual Science, 46(11), 4295–4301. https://doi.org/10.1167/iovs.04-1057

    Article  Google Scholar 

  28. Shibuya, M. (2011). Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes & Cancer, 2(12), 1097–1105. https://doi.org/10.1177/1947601911423031

    Article  CAS  Google Scholar 

  29. Kota, S. K., Meher, L. K., Jammula, S., Kota, S. K., Krishna, S. V., et al. (2012). Aberrant angiogenesis: The gateway to diabetic complications. Ind. J. Endo. Metabol., 16(6), 918.

    Article  Google Scholar 

  30. N.M., Beaulieu, W.T., Bressler, S.B., Glassman, A.R., Melia, B.M., Jampol, L. M., Jhaveri, C.D., Salehi-Had, H., Velez, G., Sun, J.K., DRCR Retina Network. (2020). Anti-vascular endothelial growth factor therapy and risk of traction retinal detachment in eyes with proliferative diabetic retinopathy: Pooled analysis of five DRCR retina network randomized clinical trials. Retina. 40(6), 1021-1028

  31. Titchenell, P. M., & Antonetti, D. A. (2013). Using the past to inform the future: Anti-VEGF therapy as a road map to develop novel therapies for diabetic retinopathy. Diabetes, 62, 1808–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Treins, C., Giorgetti-Peraldi, S., Murdaca, J., & Van Obberghen, E. (2001). Regulation of vascular endothelial growth factor expression by advanced glycation end products. Journal of Biological Chemistry, 276, 43836–43841.

    Article  CAS  PubMed  Google Scholar 

  33. Aiello, L. P., Bursell, S. E., Clermont, A., Duh, E., Ishii, H., Takagi, C., Mori, F., Ciulla, T. A., Ways, K., Jirousek, M., Smith, L. E., & King, G. L. (1997). Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes., 46, 10473-10480.a.

    Article  Google Scholar 

  34. Waszczykowska, A., Podgórski, M., Waszczykowski, M., Gerlicz-Kowalczuk, Z., & Jurowski, P. (2020). Matrix metalloproteinases MMP-2 and MMP-9, their inhibitors TIMP-1 and TIMP-2, vascular endothelial growth factor and sVEGFR-2 as predictive markers of ischemic retinopathy in patients with systemic sclerosis-case series report. International Journal of Molecular Sciences, 21(22), 8703. https://doi.org/10.3390/ijms21228703

    Article  PubMed  PubMed Central  Google Scholar 

  35. Solanki, A., Bhatt, L. K., Johnston, T. P., Prabhavalkar, K. S. (2019). Targeting matrix metalloproteinases for diabetic retinopathy: The way ahead? Current Protein & Peptide Science, 20(4), 324–333. https://doi.org/10.2174/1389203719666180914093109

  36. Kowluru, R. A., Shan, Y., & Mishra, M. (2016). Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy. Laboratory Investigation, 96(10), 1040–1049.

    Article  CAS  PubMed  Google Scholar 

  37. Lima-Fontes, M., Barata, P., Falcão, M., & Carneiro, Â. (2020). Ocular findings in metabolic syndrome: A review. Porto Biomed J., 5(6), e104. https://doi.org/10.1097/j.pbj.0000000000000104

    Article  PubMed  PubMed Central  Google Scholar 

  38. Crane, Isabel J., & Liversidge, Janet. (2008). Mechanisms of leukocyte migration across the blood-retina barrier. Seminars in immunopathology, 30,2(2008), 165–77. https://doi.org/10.1007/s00281-008-0106-7

    Article  Google Scholar 

  39. Huang, H., Gandhi, J. K., Zhong, X., Wei, Y., Gong, J., Duh, E. J., & Vinores, S. A. (2011). TNF alpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Investigative Ophthalmology & Visual Science, 52(3), 1336–1344.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Zhimin Yu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors has their consent to participate.

Consent for Publication

All authors has their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Xu, R., Ning, L. et al. Bergenin alleviates Diabetic Retinopathy in STZ-induced rats. Appl Biochem Biotechnol 195, 5299–5311 (2023). https://doi.org/10.1007/s12010-022-03949-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03949-x

Keywords

Navigation