Skip to main content
Log in

Enhanced Biosynthesis of D-Arabitol by Metschnikowia reukaufii Through Optimizing Medium Composition and Fermentation Conditions

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

D-Arabitol is an important functional sugar alcohol, which can be used in the preparation of foods, chemicals, and medicines. Despite biological production of D-arabitol from low-cost substrates has recently been the focus of research, low yield of this technology has limited its large-scale exploitation. Optimization of this bioprocess could be a promising option to improve the yield of D-arabitol. In this study, one-factor-at-a-time (OFAT) strategy and Box-Behnken design (BBD) were used to increase D-arabitol production by Metschnikowia reukaufii CICC 31,858 through optimizing the fermentation conditions and medium composition. The OFAT optimization provided the optimal conditions for temperature, agitation speed, and fermentation time of 30℃, 220 rpm, and 6 days, respectively. Likewise, the optimum concentrations of peptone, ammonium sulfate, KH2PO4, MgSO4·7H2O, and fumaric acid in the fermentation medium were (g/L) 7.5, 1, 2, 0.5, and 7.5, respectively. Under these optimum conditions, 80.43 g/L of D-arabitol was produced from 200 g/L of glucose, with a productivity of 0.56 g/L/h. The BBD optimization with three important components of fermentation medium (KH2PO4, MgSO4·7H2O, and fumaric acid) showed that the predicted titer of D-arabitol varied from 47.21 to 89.27 g/L, and the actual titer of D-arabitol ranged from 47.36 to 89.83 g/L. The optimum concentrations (g/L) of KH2PO4, MgSO4·7H2O, and fumaric acid in the fermentation medium were found to be 1.0, 0.5, and 4.7 g/L, respectively. Under the optimum conditions, 92.45 g/L of D-arabitol was finally produced with the yield and productivity of 0.46 g/g and 0.64 g/L/h, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Roberts, A. (2016). The safety and regulatory process for low calorie sweeteners in the United States. Physiology and Behavior, 164, 439–444. https://doi.org/10.1016/j.physbeh.2016.02.039

    Article  CAS  PubMed  Google Scholar 

  2. Felipe Hernández-Pérez, A., Jofre, F. M., De Souza Queiroz, S., Vaz De Arruda, P., Chandel, A. K., & Felipe, M. D. G. D. A. (2020). In Biotechnological production of sweeteners. Biotechnological Production of Bioactive Compounds (pp. 261–292). Elsevier. https://doi.org/10.1016/B978-0-444-64323-0.00009-6

  3. Ravikumar, Y., Ponpandian, L. N., Zhang, G., Yun, J., & Qi, X. (2021). Harnessing L-arabinose isomerase for biological production of D-tagatose: Recent advances and its applications. Trends in Food Science and Technology, 107, 16–30. https://doi.org/10.1016/j.tifs.2020.11.020

    Article  CAS  Google Scholar 

  4. Kordowska-Wiater, M. (2015). Production of arabitol by yeasts: Current status and future prospects. Journal of Applied Microbiology, 119(2), 303–314. https://doi.org/10.1111/jam.12807

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, G., Lin, Y., He, P., Li, L., Wang, Q., & Ma, Y. (2014). Characterization of the sugar alcohol-producing yeast Pichia anomala. Journal of Industrial Microbiology and Biotechnology, 41(1), 41–48. https://doi.org/10.1007/s10295-013-1364-5

    Article  CAS  PubMed  Google Scholar 

  6. Ravikumar, Y., Razack, S. A., Ponpandian, L. N., Zhang, G., Yun, J., Huang, J., & Qi, X. (2022). Microbial hosts for production of D-arabitol Current state-of-art and future prospects. Trends in Food Science and Technology, 120(April 2021), 100–110. https://doi.org/10.1016/j.tifs.2021.12.029

    Article  CAS  Google Scholar 

  7. Guo, Q., Zabed, H., Zhang, H., Wang, X., Yun, J., Zhang, G., … Qi, X. (2019). Optimization of fermentation medium for a newly isolated yeast strain (Zygosaccharomyces rouxii JM-C46) and evaluation of factors affecting biosynthesis of D-arabitol. Lwt, 99(June 2018), 319–327. https://doi.org/10.1016/j.lwt.2018.09.086

  8. Qi, X., Luo, Y., Wang, X., Zhu, J., Lin, J., Zhang, H., & Sun, W. (2015). Enhanced d-arabitol production by Zygosaccharomyces rouxii JM-C46: Isolation of strains and process of repeated-batch fermentation. Journal of Industrial Microbiology and Biotechnology, 42(5), 807–812. https://doi.org/10.1007/s10295-015-1603-z

    Article  CAS  PubMed  Google Scholar 

  9. Saha, B. C., Sakakibara, Y., & Cotta, M. A. (2007). Production of D-arabitol by a newly isolated Zygosaccharomyces rouxii. Journal of Industrial Microbiology and Biotechnology, 34(7), 519–523. https://doi.org/10.1007/s10295-007-0211-y

    Article  CAS  PubMed  Google Scholar 

  10. Sánchez-Fresneda, R., Guirao-Abad, J. P., Argüelles, A., González-Párraga, P., Valentín, E., & Argüelles, J. C. (2013). Specific stress-induced storage of trehalose, glycerol and d-arabitol in response to oxidative and osmotic stress in Candida albicans. Biochemical and Biophysical Research Communications, 430(4), 1334–1339. https://doi.org/10.1016/j.bbrc.2012.10.118

    Article  CAS  PubMed  Google Scholar 

  11. Song, W., Lin, Y., Hu, H., Xie, Z., & Zhang, J. (2011). Isolation and identification of a novel Candida sp H2 producing D-arabitol and optimization of D-arabitol production. Wei sheng wu xue bao = Acta microbiologica Sinica, 51(3), 332–339. https://doi.org/10.13343/j.cnki.wsxb.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  12. Zheng, S., Jiang, B., Zhang, T., & Chen, J. (2020). Combined mutagenesis and metabolic regulation to enhance d-arabitol production from Candida parapsilosis. Journal of Industrial Microbiology and Biotechnology, 47(4–5), 425–435. https://doi.org/10.1007/s10295-020-02278-4

    Article  CAS  PubMed  Google Scholar 

  13. Koganti, S., & Ju, L. K. (2013). Debaryomyces hansenii fermentation for arabitol production. Biochemical Engineering Journal, 79, 112–119. https://doi.org/10.1016/j.bej.2013.07.014

    Article  CAS  Google Scholar 

  14. Kumdam, H., Murthy, S. N., & Gummadi, S. N. (2014). Arabitol production by microbial fermentation - biosynthesis and future applications. International Journal of Sciences & Applied Research, 1(1), 1–12.

    Google Scholar 

  15. Nozaki, H., Suzuki, S. I., Tsuyoshi, N., & Yokozeki, K. (2003). Production of D-arabitol by Metschnikowia reukaufii AJ14787. Bioscience, Biotechnology and Biochemistry, 67(9), 1923–1929. https://doi.org/10.1271/bbb.67.1923

    Article  CAS  Google Scholar 

  16. Van Eck, J. H., Prior, B. A., & Brandt, E. V. (1993). The water relations of growth and polyhydroxy alcohol production by ascomycetous yeasts. Journal of General Microbiology, 139(5), 1047–1054. https://doi.org/10.1099/00221287-139-5-1047

    Article  Google Scholar 

  17. Gancedo, C., Gancedo, J. M., & Sols, A. (1968). Glycerol metabolism in yeasts: Pathways of utilization and production. European Journal of Biochemistry, 5(2), 165–172. https://doi.org/10.1111/j.1432-1033.1968.tb00353.x

    Article  CAS  PubMed  Google Scholar 

  18. Cheng, H., Lv, J., Wang, H., Wang, B., Li, Z., & Deng, Z. (2014). Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Applied Microbiology and Biotechnology, 98(8), 3539–3552. https://doi.org/10.1007/s00253-013-5501-x

    Article  CAS  PubMed  Google Scholar 

  19. Narisetty, V., Astray, G., Gullón, B., Castro, E., Parameswaran, B., & Pandey, A. (2017). Improved 1,3-propanediol production with maintained physical conditions and optimized media composition: Validation with statistical and neural approach. Biochemical Engineering Journal, 126, 109–117. https://doi.org/10.1016/j.bej.2017.07.003

    Article  CAS  Google Scholar 

  20. Yang, M., An, Y., Zabed, H. M., Guo, Q., Yun, J., Zhang, G., & Qi, X. (2019). Random mutagenesis of Clostridium butyricum strain and optimization of biosynthesis process for enhanced production of 1,3-propanediol. Bioresource Technology, 284, 188–196. https://doi.org/10.1016/j.biortech.2019.03.098

    Article  CAS  PubMed  Google Scholar 

  21. Zabed, H. M., Zhang, Y., Guo, Q., Yun, J., Yang, M., Zhang, G., & Qi, X. (2019). Co-biosynthesis of 3-hydroxypropionic acid and 1,3-propanediol by a newly isolated Lactobacillus reuteri strain during whole cell biotransformation of glycerol. Journal of Cleaner Production, 226(2019), 432–442. https://doi.org/10.1016/j.jclepro.2019.04.071

    Article  CAS  Google Scholar 

  22. Chen, X. F., Huang, C., Yang, X. Y., Xiong, L., Chen, X. D., & Ma, L. L. (2013). Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresource Technology, 143, 18–24. https://doi.org/10.1016/j.biortech.2013.05.102

    Article  CAS  PubMed  Google Scholar 

  23. Sabra, W., Groeger, C., Sharma, P. N., & Zeng, A. P. (2014). Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation. Applied Microbiology and Biotechnology, 98(9), 4267–4276. https://doi.org/10.1007/s00253-014-5588-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramachandran, S., Roopesh, K., Nampoothiri, K. M., Szakacs, G., & Pandey, A. (2005). Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oilcakes as substrates. Process Biochemistry, 40(5), 1749–1754. https://doi.org/10.1016/j.procbio.2004.06.040

    Article  CAS  Google Scholar 

  25. Liszkowska, W., & Berlowska, J. (2021). Yeast fermentation at low temperatures: Adaptation to changing environmental conditions and formation of volatile compounds. Molecules, 26(4), 1035. https://doi.org/10.3390/molecules26041035

  26. Beltran, G., Novo, M., Guillamón, J. M., Mas, A., & Rozès, N. (2008). Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. International Journal of Food Microbiology, 121(2), 169–177. https://doi.org/10.1016/j.ijfoodmicro.2007.11.030

    Article  CAS  PubMed  Google Scholar 

  27. Toyoda, T., & Ohtaguchi, K. (2011). Effect of temperature on d-arabitol production from lactose by Kluyveromyces lactis. Journal of Industrial Microbiology and Biotechnology, 38(9), 1179–1185. https://doi.org/10.1007/s10295-010-0893-4

    Article  CAS  PubMed  Google Scholar 

  28. Kumdam, H., Murthy, S. N., & Gummadi, S. N. (2013). Production of ethanol and arabitol by Debaryomyces nepalensis: Influence of process parameters. AMB Express, 3, 1–12. https://doi.org/10.1186/2191-0855-3-23

    Article  CAS  Google Scholar 

  29. Akinosho, H., Rydzak, T., Borole, A., Ragauskas, A., & Close, D. (2015). Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. Ecotoxicology, 24(10), 2156–2174. https://doi.org/10.1007/s10646-015-1543-4

    Article  CAS  PubMed  Google Scholar 

  30. Fairbairn, S., McKinnon, A., Musarurwa, H. T., Ferreira, A. C., & Bauer, F. F. (2017). The impact of single amino acids on growth and volatile aroma production by Saccharomyces cerevisiae strains. Frontiers in Microbiology, 8(DEC), 1–12. https://doi.org/10.3389/fmicb.2017.02554

    Article  Google Scholar 

  31. Walker, G. M., & Stewart, G. G. (2016). Saccharomyces cerevisiae in the production of fermented beverages. Beverages, 2(4), 1–12. https://doi.org/10.3390/beverages2040030

    Article  CAS  Google Scholar 

  32. Rhee, J. Il, & Sohn, O. J. (2003). Flow injection system for on-line monitoring of fumaric acid in biological processes. In Analytica Chimica Acta (Vol. 499, pp. 71–80). Elsevier. https://doi.org/10.1016/j.aca.2003.08.029

  33. Rakić, T., Kasagić-Vujanović, I., Jovanović, M., Jančić-Stojanović, B., & Ivanović, D. (2014). Comparison of full factorial design, central composite design, and Box-Behnken design in chromatographic method development for the determination of fluconazole and its impurities. Analytical Letters, 47(8), 1334–1347. https://doi.org/10.1080/00032719.2013.867503

    Article  CAS  Google Scholar 

  34. Loman, A. A., Islam, S. M. M., & Ju, L. K. (2018). Production of arabitol from enzymatic hydrolysate of soybean flour by Debaryomyces hansenii fermentation. Applied Microbiology and Biotechnology, 102(2), 641–653. https://doi.org/10.1007/s00253-017-8626-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31972042, 32150410349), National Key R & D Program of China (Grant No. 2021YFA0910401), Natural Science Foundation of Jiangsu Province (Grant No. BK20210752), China Postdoctoral Science Foundation (Grant No. 2019M661759), Foreign Experts Program of Ministry of Science and Technology of China (Grant No. QNJ20200214015), and Innovation and Entrepreneurship Program of Jiangsu Province (Grant No. JSSCBS20210929).

Author information

Authors and Affiliations

Authors

Contributions

Jiaqi Huang: Conceptualization, investigation, formal analysis, writing—original draft. Yingfeng An: Investigation, formal analysis, writing—review and editing. Hossain M Zabed: Conceptualization, writing—review and editing. Yuvaraj Ravikumar: Writing—review and editing. Mei Zhao: Writing—review and editing. Junhua Yun: Formal analysis. Guoyan Zhang: Resources, formal analysis. Yufei Zhang: Resources, formal analysis. Xiaolan Li: Investigation, formal analysis. Xianghui Qi: Conceptualization; writing, review and editing; supervision.

Corresponding author

Correspondence to Xianghui Qi.

Ethics declarations

Ethics Approval

Not applicable. This article does not contain data collected from humans or animals.

Consent to Participate

All authors agreed to participate.

Consent for Publication

Not applicable. The manuscript does not contain any individual person’s data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., An, Y., Zabed, H.M. et al. Enhanced Biosynthesis of D-Arabitol by Metschnikowia reukaufii Through Optimizing Medium Composition and Fermentation Conditions. Appl Biochem Biotechnol 194, 3119–3135 (2022). https://doi.org/10.1007/s12010-022-03910-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03910-y

Keywords

Navigation