Skip to main content

Advertisement

Log in

Biodegradable Polymers and Gold Nanoparticle–Decorated Skin Substitutes: Synthesis, Characterization, and In Vitro Biological Activities

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Skin substitutes are a restorative material used to treat many skin injuries by replacing or masking the wound. It is also capable of producing an original skin type. In this study, gold nanoparticle–aided skin substitutes were prepared using biodegradable materials (chitosan, sodium alginate, and gelatin) under the magnetic stirring method. Gold ions were reduced using aqueous extract of Cyperus rotundus and Hemigraphis alternata. The formation of prepared gold nanoparticles was confirmed using spectroscopy techniques. The physical parameters of the skin substitutes were tested, and it was characterized using FTIR, DTG, laser profilometer, and FESEM analysis. HAaNP-aided skin substitutes have a bubble-like texture, and it facilitates higher water-absorbing ability. CRaNP aided skin substitutes reducing the hydrophilicity of the prepared skin substitutes. Antioxidant and antifungal skin substitute activities were carried out using DPPH radical scavenging activity and disk diffusion method, respectively. The antioxidant activity revealed the skin substitutes to possess significant free radical inhibition and as the number of gold nanoparticles increases, the activity also increases. The prepared samples show excellent activity against Aspergillus niger. The MTT assay reveals that the cancer cell (A-375) viability decreases by increasing skin substitutes’ concentration. The normal cells (HEK-293) were cultured in a medium containing skin substitutes, facilitating the growth of cells. The cell attachment was observed in prepared cell lines after 24-h treatment. The results of this study suggest the prepared Cyperus rotundus and Hemigraphis alternata embedded with gold nanoparticle–aided skin substitutes are a promising material for medical and cosmetic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not Applicable

References

  1. Dolbashid, A. S., Mokhtar, M. S., Muhamad, F., & Ibrahim, F. (2017). Potential applications of human artificial skin and electronic skin (e-skin): A review. Bioinspired, Biomimetic and Nanobiomaterials, 7(1), 53–64. https://doi.org/10.1680/jbibn.17.00002.

    Article  Google Scholar 

  2. Saurabh, D., Baganizi, D. R., Sahu, R., Dosunmu, E., Chaudhari, A., Vig, K., Pillai, S. R., Singh, S. R., & Dennis, V. A. (2017). Immunological challenges associated with artificial skin grafts: Available solutions and stem cells in future design of synthetic skin. Journal of Biological Engineering, 11(1), 49. https://doi.org/10.1186/s13036-017-0089-9.

    Article  CAS  Google Scholar 

  3. Ferreira, M. C., Paggiaro, A. O., Cesar, I., Neto, N. T., Dos, G. B., & Santos. (2011). Skin substitutes: current concepts and a new classification system. Rev. Bras. Cir. Plast, 26(4), 696–702696.

    Article  Google Scholar 

  4. Peng, Z., Deng, C., Xu, H., Xing, T., He, H., Lin, C., & Jiansheng, S. (2014). Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Bio-medical Materials and Engineering, 24(1), 633–641. https://doi.org/10.3233/BME-130851.

    Article  CAS  Google Scholar 

  5. Bapi, S., Raminder, S., Raquel, S., Roether, J. A., Joachim, K., Rainer, D., Schubert, D. W., Iwona, C., & Boccaccini, A. R. (2014). Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One, 9(9), e107952. https://doi.org/10.1371/journal.pone.0107952.

    Article  CAS  Google Scholar 

  6. Bhowmick, S., Thanusha, A. V., Kumar, A., Scharnweber, D., Rother, S., & Koul, V. (2018). Nanofibrous artificial skin substitute composed of mPEG–PCL grafted gelatin/hyaluronan/chondroitin sulfate/sericin for 2nd degree burn care: In vitro and in vivo study. RSC Advances, 8(30), 16420–16432. https://doi.org/10.1039/c8ra01489b.

    Article  CAS  Google Scholar 

  7. Devi Pandima, M., Sekar, M., Chamundeswari, M., Moorthy, A., Krithiga, G., Selva Murugan, N., & Sastry, T. P. (2012). A novel wound dressing material— fibrin–chitosan–sodium alginate composite sheet. Bulletin of Materials Science, 35(7), 1157–1163.

    Article  Google Scholar 

  8. Das Subhamoy, Aaron B Baker (2016) Biomaterials and nanotherapeutics for enhancing skin wound healing. Frontiers in Bioengineering and Biotechnology 4:82. DOI: https://doi.org/10.3389/fbioe.2016.00082

  9. Morgane, B., Yves, G., Lacroix, C., Verrier, B., & Monge, C. (2017). Nanoparticle-based dressing: The future of wound treatment? Trends in Biotechnology, 35(8), 770–784. https://doi.org/10.1016/j.tibtech.2017.05.005.

    Article  CAS  Google Scholar 

  10. Peng, C. C., Yang, M. H., Chiu, W. T., Chiu, C. H., Yang, C. S., Chen, Y. W., & Peng, R. Y. (2008). Composite nano-titanium oxide–chitosan artificial skin exhibits strong wound-healing effect—An approach with anti-inflammatory and bactericidal kinetics. Macromolecular Bioscience, 8(4), 316–327. https://doi.org/10.1002/mabi.200700188.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, T., Zheng, Y., Shen, Y., Yijie, S., Fang, L., Chang, S., & Liang, Z. (2017). Chitosan nanoparticles loaded hydrogels promote skin wound healing through the modulation of reactive oxygen species. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 138–149. https://doi.org/10.1080/21691401.2017.1415212.

    Article  CAS  PubMed  Google Scholar 

  12. Hebbalalu, D., Lalley, J., Nadagouda, M. N., & Varma, R. S. (2013). Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustainable Chemistry & Engineering, 1(7), 703–712. https://doi.org/10.1021/sc4000362.

    Article  CAS  Google Scholar 

  13. Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry, 10(8), 859. https://doi.org/10.1039/b804703k.

    Article  CAS  Google Scholar 

  14. Nadagouda, M. N., & Varma, R. S. (2006). Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: Density-assisted self-assembly of nanospheres, wires and rods. Green Chemistry, 8(6), 516. https://doi.org/10.1039/b601271j.

    Article  CAS  Google Scholar 

  15. Varma, R. S. (2012). Greener approach to nanomaterials and their sustainable applications. Current Opinion in Chemical Engineering, 1(2), 123–128. https://doi.org/10.1016/j.coche.2011.12.002.

    Article  CAS  Google Scholar 

  16. Kou Jiahui, Rajender S Varma (2012) Beet juice utilization: Expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves. RSC Advances 2(27):10283. https://doi.org/10.1039/c2ra21908e

  17. Kou, J., & Varma, R. S. (2012). Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles. ChemSusChem, 5(12), 2435–2441. https://doi.org/10.1002/cssc.201200477.

    Article  CAS  PubMed  Google Scholar 

  18. Nadagouda, M. N., Iyanna, N., Lalley, J., Han, C., Dionysiou, D. D., & Varma, R. S. (2014). Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustainable Chemistry & Engineering, 2(7), 1717–1723. https://doi.org/10.1021/sc500237k.

    Article  CAS  Google Scholar 

  19. Baruwati, B., Polshettiwar, V., & Varma, R. S. (2009). Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chemistry, 11(7), 926. https://doi.org/10.1039/b902184a.

    Article  CAS  Google Scholar 

  20. Baruwati, B., & Varma, R. (2009). High value products from waste: grape pomace extractâ. A Three-in-One Package for the Synthesis of Metal Nanoparticles. ChemSusChem, 2(11), 1041–1044. https://doi.org/10.1002/cssc.200900220.

    Article  CAS  PubMed  Google Scholar 

  21. Dipali, G., Singh, V., & Agrawal, N. (2016). Volatile constituents and antimicrobial activities of dried rhizome of Cyperus rotundus Linn. International Journal of Current Microbiology and Applied Sciences, 5(11), 334–339.

    Article  Google Scholar 

  22. Gui-feng, H., Mao-qin, T., Yan-jin, W., Feng-yuan, C., & Li-ju, Q. (2017). Determination of antidepressant activity of Cyperus rotundus L extract in rats. Tropical Journal of Pharmaceutical Research, 16(4), 867–871.

    Article  Google Scholar 

  23. Singh, S. P., Raghavendra, K., & Dash, A. P. (2009). Evaluation of hexane extract of tuber of root of Cyperus rotundus Linn (Cyperaceae) for repellency against mosquito vectors. Journal of Parasitology Research, 2009, 1–5. https://doi.org/10.1155/2009/908085.

    Article  Google Scholar 

  24. Essaidiab, I., Koubaierab, H. B. H., Snoussiab, A., Casabiancac, H., Chaabouniab, M. M., & Bouzouita, N. (2014). Chemical composition of Cyperus rotundus L. tubers essential oil from the South of Tunisia, antioxidant potentiality and antibacterial activity against foodborne pathogens. Journal of Essential Oil-Bearing Plants, 17(3), 522–532. https://doi.org/10.1080/0972060X.2014.895182.

    Article  CAS  Google Scholar 

  25. Ilham Eroz Poyraz, Betül Demirci, Sevim Kucuk (2018) Volatiles of Turkish Cyperus rotundus L. Roots, Rec. Nat. Prod. 12:3:222-228.

  26. Raut, N. A., & Gaikwad, N. J. (2006). Antidiabetic activity of hydroethanolic extract of Cyperus rotundus in alloxan induced diabetes in rats. Fitoterapia, 77(7-8), 585–588.

    Article  Google Scholar 

  27. Puratchikody, A., Devi, C. N., & Nagalakshmi, G. (2006). Wound healing activity of Cyperus rotundus linn. Indian Journal of Pharmaceutical Sciences, 68(1), 97–101.

    Article  Google Scholar 

  28. Yu, H.-H., Lee, D.-H., Se-Jeong, S., & Yong-Ouk, Y. (2007). Anticariogenic properties of the extract of Cyperus rotundus. The American Journal of Chinese Medicine., 35(3), 497–505.

    Article  Google Scholar 

  29. Edwin, B. T., & Nair, P. D. (2011). In vitro evaluation of wound healing property of Hemigraphis alternata (Burm. F) t. Anderson using fibroblast and endothelial cells. Biosciences, Biotechnology Research Asia, 8(1), 185–193.

    Article  Google Scholar 

  30. Annapoorna, M., Sudheesh Kumar, P. T., Lakshmi, R., Lahshman, Lakshman, V. K., Nair, S. V., & Jayakumar, R. (2013). Biochemical properties of Hemigraphis alternate incorporated chitosan hydrogel scaffold. Carbohydrate Polymers, 92, 1561–1565. https://doi.org/10.1016/j.carbpol.2012.10.041.

    Article  CAS  PubMed  Google Scholar 

  31. Rahman Mushiur, S. M., Atikullah, Islam, N., Mohaimenul, Ahammad, F., Islam, S., Saha, B., & Rahman, H. (2019). Anti-inflammatory, antinociceptive and antidiarrhoeal activities of methanol and ethyl acetate extract of Hemigraphis alternata leaves in mice. Clinical Phytoscience, 5, 16. https://doi.org/10.1186/s40816-019-0110-6.

    Article  Google Scholar 

  32. Yang, D. S., Svoboda, V., Son, K.-C., & Kays, S. J. (2009). Screening indoor plants for volatile organic pollutant removal efficiency. Hortscience, 44(5), 1377–1381.

    Article  Google Scholar 

  33. Forester, S. C., & Lambert, J. D. (2011). Antioxidant effects of green tea. Molecular Nutrition & Food Research, 55(6), 844–854. https://doi.org/10.1002/mnfr.201000641.

    Article  CAS  Google Scholar 

  34. Wani, S. A., & Kumar, P. (2018). Fenugreek: A review on its nutraceutical properties and utilization in various food products. Journal of the Saudi Society of Agricultural Sciences, 17(2), 97–106.

    Article  Google Scholar 

  35. Nayak, A. K., Pal, D., Pradhan, J., & Hasnain, M. S. (2013). Fenugreek seed mucilage-alginate mucoadhesive beads of metformin HCl: Design, optimization and evaluation. International Journal of Biological Macromolecules, 54, 144–154. https://doi.org/10.1016/j.ijbiomac.2012.12.008.

    Article  CAS  PubMed  Google Scholar 

  36. Shahed, P., Rahman, M., Khan, M. A., Khan, A. H., Islam, J. M. M., Ahmad, M., Fizur Rahman, M., & Ahmed, B. (2012). Preparation and characterization of artificial skin using chitosan and gelatin composites for potential biomedical application. Polymer Bulletin, 69(6), 715–731. https://doi.org/10.1007/s00289-012-0761-7.

    Article  CAS  Google Scholar 

  37. Wu, J., Liu, H., Shuang Wang, G. S., Qin, Z., Chen, L., Zheng, Q., Liu, Q., & Zhang, Q. (2015). The preparation, characterization, antimicrobial stability and in-vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 37, 166–173.

    Google Scholar 

  38. Yunzhen, Y., Ding, D., Hongyuan, S., Qifan, P., & Yaqin, H. (2017). Antibacterial activity and physical properties of fish gelatin-chitosan edible films supplemented with D-limonene. International Journal of Polymer Science, 2017, 1–9. https://doi.org/10.1155/2017/1837171.

    Article  CAS  Google Scholar 

  39. Kavoosi, G., Dadfar, S. M. M., Mohammadi Purfard, A., & Mehrabi, R. (2013). Antioxidant and antibacterial properties of gelatin films incorporated with carvacrol. Journal of Food Safety, 33(4), 423–432. https://doi.org/10.1111/jfs.12071.

    Article  Google Scholar 

  40. Masoumeh, E., Safavipour, H., Houshmand, B., & Faghihi, S. (2018). Development of a PCL/gelatin/Chitosan/β-TCP electrospun composite for guided bone regeneration. Progress in Biomaterials, 7(3), 225–237. https://doi.org/10.1007/s40204-018-0098-x.

    Article  CAS  Google Scholar 

  41. Sasidharan, S., & Pottail, L. (2019). Antimicrobial activity of metal and non-metallic nanoparticles from Cyperus rotundus root extract on infectious disease-causing pathogens, Journal of Plant Biochemistry and Biotechnology. Journal of Plant Biochemistry and Biotechnology, 29, 134–143. https://doi.org/10.1007/s13562-019-00523-1.

    Article  CAS  Google Scholar 

  42. Santhiya, S., & Pottail, L. (2020). Anti - bacterial and skin - cancer activity of AuNP, rGO and AuNP - rGO composite using Hemigraphis alternata (Burm. F.) T. Anderson. Biocatalysis and Agricultural Biotechnology, 25, 101596. https://doi.org/10.1016/j.bcab.2020.101596.

    Article  Google Scholar 

  43. Shanthi, J., Aishwarya, S., & Swathi, R. (2020). Fabrication of roughness enhanced hydrophobic coatings. Journal of Nano- and Electronic Physics, 12(2), 02042. https://doi.org/10.21272/jnep.12(2).02042.

    Article  CAS  Google Scholar 

  44. Sarangan, P., Jayakumar, K., & Jayashree, V. (2016). Primary cutaneous aspergillosis- tinea pedis caused by aspergillus niger in an immunocompetent adult individual residing in silk city of Kancheepuram district. International Journal of Advanced Research, 4(9), 443–446. https://doi.org/10.21474/IJAR01/1812.

    Article  Google Scholar 

  45. Nirmala, D., & Kakati, D. K. (2013). Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. Journal of Food Engineering, 117, 193–204.

    Article  Google Scholar 

  46. Mallikarjuna, B., Madhusudana Rao, K., Pallavi, K., Chowdoji Rao, K., & Subha, M. C. S. (2015). Biodegradable interpenetrating polymer network hydrogel membranes for controlled release of anticancer drug. Asian Journal of Pharmaceutical, 9, 129–136.

    Article  CAS  Google Scholar 

  47. Cheng, Y.-H., Yang, S.-H., Wen-Yu, S., Yu-Chun, C., Yang, K.-C., Cheng, W. T.-K., Wu, S.-C., & Lin, F.-H. (2010). Thermosensitive chitosan–gelatin–glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: An in vitro study. Tissue Engineering Parts A, 16(2).

Download references

Acknowledgements

The authors sincerely thank Avinashilingam Institute for Home Science and Higher Education for Women, for providing support and infrastructure to carry out this work. Our special thanks to Bharat Ratna Prof. CNR RAO Research Centre and Advanced Research Laboratory, AIHSHEW, Coimbatore, Tamilnadu, India, for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

The first author (Santhiya Sasidharan): Design, methodology, writing-original draft preparation, and editing

The second author (Lalitha Pottail): Conceptualization, design, supervisor, manuscript review, and editing

Corresponding author

Correspondence to Lalitha Pottail.

Ethics declarations

Ethics Approval

Not Applicable

Consent to Participate

Not Applicable

Consent for Publication

Not Applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasidharan, S., Pottail, L. Biodegradable Polymers and Gold Nanoparticle–Decorated Skin Substitutes: Synthesis, Characterization, and In Vitro Biological Activities. Appl Biochem Biotechnol 193, 3232–3252 (2021). https://doi.org/10.1007/s12010-021-03600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03600-1

Keywords

Navigation