Skip to main content
Log in

Function Enhancement of a Metabolic Module via Endogenous Promoter Replacement for Pseudomonas sp. JY-Q to Degrade Nicotine in Tobacco Waste Treatment

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nicotine-degrading Pseudomonas sp. JY-Q is a preferred strain utilized in reconstituted tobacco process for tobacco waste treatment. However, its efficiency of nicotine metabolism still requires to be improved via genomic technology such as promoter engineering based on genomic information. Concerning upstream module of nicotine metabolic pathway, we found that two homologous genes of nicotine dehydrogenase (nicA2 and nox) coexisted in strain JY-Q. However, the transcriptional amount of nox was 20-fold higher than that of nicA2. Thus, the nicA2 expression required improvement. Combinatorial displacement was accomplished for two predicted endogenous promoters, named as PnicA2 and Pnox for nicA2 and nox, respectively. The mutant with Pnox as the promoters for both nicA2 and nox exhibited the best nicotine metabolic capacity which increased by 66% compared to the wild type. These results suggested that endogenous promoter replacement is also feasible for function improvement of metabolic modules and strain enhancement of biodegradation capacity to meet real environment demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han, H., Ling, Z., Khan, A., Virk, A. K., Kulshrestha, S., & Li, X. (2019). Improvements of thermophilic enzymes: From genetic modifications to applications. Bioresource Technology, 279, 350–361.

    Article  CAS  Google Scholar 

  2. Oh, Y. H., Choi, J. W., Kim, E. Y., Song, B. K., Jeong, K. J., Park, K., Kim, I. K., Woo, H. M., Lee, S. H., & Park, S. J. (2015). Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 176(7), 2065–2075.

    Article  CAS  Google Scholar 

  3. Liu, Y., Li, Q., Zhu, H., & Yang, J. (2009). High soluble expression of D-amino acid oxidase in Escherichia coli regulated by a native promoter. Applied Biochemistry and Biotechnology, 158(2), 313–322.

    Article  CAS  Google Scholar 

  4. Fowler, Z. L., Gikandi, W. W., & Koffas, M. A. (2009). Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Applied and Environmental Microbiology, 75(18), 5831–5839.

    Article  CAS  Google Scholar 

  5. Ramos, J. L., Marqués, S., & Timmis, K. N. (1997). Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annual Review of Microbiology, 51(1), 341–373.

    Article  CAS  Google Scholar 

  6. Sharshar, M. M., Samak, N. A., Hao, X., Mu, T., Zhong, W., Yang, M., Peh, S., Ambreen, S., & Xing, J. (2019). Enhanced growth-driven stepwise inducible expression system development in haloalkaliphilic desulfurizing Thioalkalivibrio versutus. Bioresource Technology, 288, 121486.

    Article  CAS  Google Scholar 

  7. Shavandi, M., Sadeghizadeh, M., Zomorodipour, A., & Khajeh, K. (2009). Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresource Technology, 100(1), 475–479.

    Article  CAS  Google Scholar 

  8. Zhang, H., Zhao, R., Huang, C., Li, J., Shao, Y., Xu, J., Shu, M., & Zhong, W. (2019). Selective and faster nicotine biodegradation by genetically modified Pseudomonas sp. JY-Q in the presence of glucose. Applied Microbiology and Biotechnology, 103(1), 339–348.

    Article  CAS  Google Scholar 

  9. Herring, C. D., Glasner, J. D., & Blattner, F. R. (2003). Gene replacement without selection: Regulated suppression of amber mutations in Escherichia coli. Gene, 311, 153–163.

    Article  CAS  Google Scholar 

  10. Kim, J. Y., & Cha, H. J. (2003). Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Biotechnology and Bioengineering, 83(7), 841–853.

    Article  CAS  Google Scholar 

  11. Liu, Y., Zhu, Y., Li, J., Shin, H. D., Chen, R. R., Du, G., Liu, L., & Chen, J. (2014). Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metabolic Engineering, 23, 42–52.

    Article  CAS  Google Scholar 

  12. Chen, X., Gao, C., Guo, L., Hu, G., Luo, Q., Liu, J., Nielsen, J., Chen, J., & Liu, L. (2018). DCEO biotechnology: Tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chemical Reviews, 118(1), 4–72.

    Article  CAS  Google Scholar 

  13. Hu, H., Wang, W., Tang, H., & Xu, P. (2015). Characterization of pseudooxynicotine amine oxidase of Pseudomonas putida S16 that is crucial for nicotine degradation. Scientific Reports, 5(1), 17770.

    Article  CAS  Google Scholar 

  14. Hu, H., Wang, L., Wang, W., Wu, G., Tao, F., Xu, P., Deng, Z., & Tang, H. (2019). Regulatory mechanism of nicotine degradation in Pseudomonas putida. mBio, 10(3), e00602-19.

    PubMed  PubMed Central  Google Scholar 

  15. Li, J., Qian, S., Xiong, L., Zhu, C., Shu, M., Wang, J., Jiao, Y., He, H., Zhang, F., Linhardt, R. J., & Zhong, W. (2017). Comparative genomics reveals specific genetic architectures in nicotine metabolism of Pseudomonas sp. JY-Q. Frontiers in Microbiology, 8, 2085.

    Article  Google Scholar 

  16. Lim, H. J., Kim, K., Shin, M., Jeong, J. H., Ryu, P. Y., & Choy, H. E. (2015). Effect of promoter-upstream sequence on sigma38-dependent stationary phase gene transcription. Journal of Microbiology, 53(4), 250–255.

    Article  CAS  Google Scholar 

  17. Matsumoto, T., Tanaka, T., & Kondo, A. (2017). Engineering metabolic pathways in Escherichia coli for constructing a "microbial chassis" for biochemical production. Bioresource Technology, 245(Pt B), 1362–1368.

    Article  CAS  Google Scholar 

  18. Nie, Z., Luo, H., Li, J., Sun, H., Xiao, Y., Jia, R., Liu, T., Chang, Y., Yu, H., & Shen, Z. (2020). High-throughput screening of T7 promoter mutants for soluble expression of cephalosporin C acylase in E. coli. Applied Biochemistry and Biotechnology, 190(1), 293–304.

    Article  CAS  Google Scholar 

  19. Xu, M., Rao, Z., Yang, J., Xia, H., Dou, W., Jin, J., & Xu, Z. (2012). Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of (L)-arginine production. Journal of Industrial Microbiology and Biotechnology, 39(3), 495–502.

  20. Hwang, H. J., Lee, S. Y., & Lee, P. C. (2018). Engineering and application of synthetic nar promoter for fine-tuning the expression of metabolic pathway genes in Escherichia coli. Biotechnology for Biofuels, 11(1), 103.

  21. Wang, S., Liu, G., Wang, J., Yu, J., Huang, B., & Xing, M. (2013). Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. Journal of Industrial Microbiology and Biotechnology, 40(6), 633–641.

    Article  CAS  Google Scholar 

  22. Xiao, F., Wang, H., Shi, Z., Huang, Q., Huang, L., Lian, J., Cai, J., & Xu, Z. (2020). Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin. Metabolic Engineering, 61, 406–415.

    Article  CAS  Google Scholar 

  23. Wang, L., Tang, H., Yu, H., Yao, Y., & Xu, P. (2014). An unusual repressor controls the expression of a crucial nicotine-degrading gene cluster in Pseudomonas putida S16. Molecular Microbiology, 91(6), 1252–1269.

    Article  CAS  Google Scholar 

  24. Zhong, W., Zhu, C., Shu, M., Sun, K., Zhao, L., Wang, C., Ye, Z., & Chen, J. (2010). Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology, 101(18), 6935–6941.

  25. Liu, H., He, H., Cheng, C., Liu, J., Shu, M., Jiao, Y., Tao, F., & Zhong, W. (2015). Diversity analysis of the bacterial community in tobacco waste extract during reconstituted tobacco process. Applied Microbiology and Biotechnology, 99(1), 469–476.

    Article  CAS  Google Scholar 

  26. Li, J., Wang, J., Li, S., Yi, F., Xu, J., Shu, M., Shen, M., Jiao, Y., Tao, F., Zhu, C., Zhang, H., Qian, S., & Zhong, W. (2019). Co-occurrence of functional modules derived from nicotine-degrading gene clusters confers additive effects in Pseudomonas sp. JY-Q. Applied Microbiology and Biotechnology, 103(11), 4499–4510.

  27. Liu, J., Ma, G., Chen, T., Hou, Y., Yang, S., Zhang, K. Q., & Yang, J. (2015). Nicotine-degrading microorganisms and their potential applications. Applied Microbiology and Biotechnology, 99(9), 3775–3785.

    Article  CAS  Google Scholar 

  28. Quandt, J., & Hynes, M. F. (1993). Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene, 127(1), 15–21.

    Article  CAS  Google Scholar 

  29. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., & Puhler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145(1), 69–73.

    Article  CAS  Google Scholar 

  30. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop 2nd., R. M., & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166(1), 175–176.

    Article  CAS  Google Scholar 

  31. Tang, H., Wang, L., Wang, W., Yu, H., Zhang, K., Yao, Y., & Xu, P. (2013). Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. PLoS Genetics, 9(10), e1003923.

    Article  Google Scholar 

  32. Li, J., Li, S., Xie, L., Chen, G., Shen, M., Pan, F., Shu, M., Yang, Y., Jiao, Y., Zhang, F., Linhardt, R. J., & Zhong, W. (2021). Additional Role of Nicotinic Acid Hydroxylase for the Transformation of 3-Succinoyl-pyridine by Pseudomonas sp. Strain JY-Q. Applied and Environmental Microbiology, 87(6), e02740–20.

  33. Liu, T., Li, J., Qiu, L., Zhang, F., Linhardt, R. J., & Zhong, W. (2020). Combined genomic and transcriptomic analysis of the dibutyl phthalate metabolic pathway in Arthrobacter sp. ZJUTW. Biotechnology and Bioengineering, 117(12), 3712–3726.

  34. Li, J., Shen, M., Chen, Z., Pan, F., Yang, Y., Shu, M., Chen, G., Jiao, Y., Zhang, F., Linhardt, R. J., & Zhong, W. (2021). Expression and functional identification of two homologous nicotine dehydrogenases, NicA2 and Nox, from Pseudomonas sp. JY-Q. Protein Expression and Purification, 178, 105767.

    Article  CAS  Google Scholar 

  35. Huang, C., Shan, L., Chen, Z., He, Z., Li, J., Yang, Y., Shu, M., Pan, F., Jiao, Y., Zhang, F., Linhardt, R. J., & Zhong, W. (2021). Differential Effects of Homologous Transcriptional Regulators NicR2A, NicR2B1, and NicR2B2 and Endogenous Ectopic Strong Promoters on Nicotine Metabolism in Pseudomonas sp. Strain JY-Q. Applied and Environmental Microbiology, 87(3), e02457–20.

  36. Tang, Q., Lu, T., & Liu, S. J. (2018). Developing a synthetic biology toolkit for Comamonas testosteroni, an emerging cellular chassis for bioremediation. ACS Synthetic Biology, 7(7), 1753–1762.

    Article  CAS  Google Scholar 

  37. Liu, D., Mao, Z., Guo, J., Wei, L., Ma, H., Tang, Y., Chen, T., Wang, Z., & Zhao, X. (2018). Construction, model-based analysis, and characterization of a promoter library for fine-tuned gene expression in Bacillus subtilis. ACS Synthetic Biology, 7(7), 1785–1797.

    Article  CAS  Google Scholar 

  38. Wei, L., Xu, N., Wang, Y., Zhou, W., Han, G., Ma, Y., & Liu, J. (2018). Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 102(9), 4117–4130.

    Article  CAS  Google Scholar 

  39. Liu, C., Zhang, B., Liu, Y. M., Yang, K. Q., & Liu, S. J. (2018). New intracellular shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum. ACS Synthetic Biology, 7(2), 591–601.

    Article  CAS  Google Scholar 

  40. Jin, L. Q., Jin, W. R., Ma, Z. C., Shen, Q., Cai, X., Liu, Z. Q., & Zheng, Y. G. (2019). Promoter engineering strategies for the overproduction of valuable metabolites in microbes. Applied Microbiology and Biotechnology, 103(21-22), 8725–8736.

    Article  CAS  Google Scholar 

Download references

Availability of Data and Materials

GenBank accession number of strain JY-Q is CP011525. Data and materials supporting this study have been provided in the text.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This work was financially supported by grants from the National Natural Science Foundation of China (31970104, 31800118, 21938012, 31670115).

Author information

Authors and Affiliations

Authors

Contributions

Jun Li: Conceptualization, resources, data curation, software, formal analysis, investigation, methodology, writing—original draft, project administration, writing—review and editing. Fengmei Yi: Data curation, software, formal analysis, writing—original draft, visualization, methodology. Guoqing Chen, Zeyu Chen, Zeling Zhang, Xiaotong Mei: Software, investigation. Fanda Pan, Yang Yang, Ming Shu: Investigation, methodology. Weihong Zhong: Conceptualization, resources, supervision, funding acquisition, investigation, methodology, project administration, writing—review and editing.

Corresponding authors

Correspondence to Yang Yang or Weihong Zhong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yi, F., Chen, G. et al. Function Enhancement of a Metabolic Module via Endogenous Promoter Replacement for Pseudomonas sp. JY-Q to Degrade Nicotine in Tobacco Waste Treatment. Appl Biochem Biotechnol 193, 2793–2805 (2021). https://doi.org/10.1007/s12010-021-03566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03566-0

Keywords

Navigation