Skip to main content
Log in

Patterns of Lignocellulosic Sugar Assimilation and Lipid Production by Newly Isolated Yeast Strains From Chilean Valdivian Forest

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Three yeast strains were isolated from decaying wood of Chilean Valdivian forest and identified as Meyerozyma guilliermondii, Scheffersomyces coipomensis, and Sugiyamaella paludigena. These strains were able to efficiently grow on the major monomers contained in Pinus spp. and Eucalyptus spp. wood that includes glucose (Glc), xylose (Xyl), and mannose (Man), showing at 28 °C higher uptake rates for Man, and in some cases for Glc, than for Xyl, used as single carbon sources. Nevertheless, in cultures performed on sugar mixtures, the strains displayed a notable preference for Glc. Additionally, in sugar mixtures, the absence of regulatory mechanisms in sugar assimilation (e.g., catabolic repression) was observed and documented when the activities of several enzymes involved in sugar assimilation (i.e., phosphoglucose isomerase, phosphomannose isomerase, and xylulokinase) were determined. The activity of the key enzymes involved in the onset of lipid accumulation (i.e., NAD+-ICDH) and in fatty acid (FA) biosynthesis (i.e., ATP:CL) indicated a significant accumulation of storage lipids (i.e., up to 24%, w/w) containing oleic and palmitic acids as the major components. The present paper is the first report on the potential of M. guilliermondii, S. coipomensis, and S. paludigena as oleaginous yeasts. We conclude that the new isolates, being able to simultaneously assimilate the major lignocellulosic sugars and efficiently convert them into oily biomass, present a biotechnological potential which deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP:CL :

ATP-citrate lyase

FA:

Fatty acid

Glc :

Glucose

Man :

Mannose

NAD+-ICDH :

NAD+-dependent isocitrate dehydrogenase

PGI :

Phosphoglucose isomerase

PMI :

Phosphomannose isomerase

PUFA:

Polyunsaturated fatty acid

SCO:

Single cell oil

TCA:

Tricarboxylic acid

XK :

Xylulokinase

Xyl :

Xylose

References

  1. Beopoulos, A., & Nicaud, J. M. (2012). Yeast: a new oil producer? Oilseeds and Fats, Crops and Lipids, 19(1), 22–28. https://doi.org/10.1684/ocl.2012.0426.

    Article  Google Scholar 

  2. Dourou, M., Aggeli, D., Papanikolaou, S., & Aggelis, G. (2018). Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Applied Microbiology and Biotechnology, 102(8), 2509–2523. https://doi.org/10.1007/s00253-018-8813-z.

    Article  CAS  Google Scholar 

  3. Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031–1051. https://doi.org/10.1002/ejlt.201100014.

    Article  CAS  Google Scholar 

  4. Bellou, S., Triantaphyllidou, I. E., Aggeli, D., Elazzazy, A. M., Baeshen, M. N., & Aggelis, G. (2016). Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology, 37, 24–35. https://doi.org/10.1016/j.copbio.2015.09.005.

    Article  CAS  Google Scholar 

  5. Makri, A., Fakas, S., & Aggelis, G. (2010). Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresource Technology, 101(7), 2351–2358. https://doi.org/10.1016/j.biortech.2009.11.024.

    Article  CAS  Google Scholar 

  6. Papanikolaou, S., & Aggelis, G. (2009). Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technology, 21(4), 83–87. https://doi.org/10.1002/lite.200900017.

    Article  CAS  Google Scholar 

  7. Papanikolaou, S., Diamantopoulou, P., Chatzifragkou, A., Philippoussis, A., & Aggelis, G. (2010). Suitability of low-cost sugars as substrates for lipid production by the fungus Thamnidium elegans. Energy & Fuels, 24(7), 4078–4086. https://doi.org/10.1021/ef1004804.

    Article  CAS  Google Scholar 

  8. Economou, C. N., Aggelis, G., Pavlou, S., & Vayenas, D. V. (2011). Single cell oil production from rice hulls hydrolysate. Bioresource Technology, 102(20), 9737–9742. https://doi.org/10.1016/j.biortech.2011.08.025.

    Article  CAS  Google Scholar 

  9. Huang, C., Chen, X. F., Xiong, L., Yang, X. Y., Chen, X. D., Ma, L. L., & Chen, Y. (2013). Microbial oil production from corncob acid hydrolysate by oleaginous yeast Trichosporon coremiiforme. Biomass and Bioenergy, 49, 273–278. https://doi.org/10.1016/j.biombioe.2012.12.023.

    Article  CAS  Google Scholar 

  10. Huang, C., Zong, M. H., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100(19), 4535–4538. https://doi.org/10.1016/j.biortech.2009.04.022.

    Article  CAS  Google Scholar 

  11. Qi, G. X., Huang, C., Chen, X. F., Xiong, L., Wang, C., Lin, X. Q., Shi, S. L., Chen, Yang, D., & De Chen, X. (2016). Semi-pilot scale microbial oil production by Trichosporon cutaneum using medium containing corncob acid hydrolysate. Applied Biochemistry and Biotechnology, 179(4), 625–632. https://doi.org/10.1007/s12010-016-2019-6.

    Article  CAS  Google Scholar 

  12. Yu, X., Zheng, Y., Dorgan, K. M., & Chen, S. (2011). Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresource Technology, 102(10), 6134–6140. https://doi.org/10.1016/j.biortech.2011.02.081.

    Article  CAS  Google Scholar 

  13. Aguayo, M. G., Ferraz, A., Elissetche, J. P., Masarin, F., & Mendonça, R. T. (2014). Lignin chemistry and topochemistry during kraft delignification of Eucalyptus globulus genotypes with contrasting pulpwood characteristics. Holzforschung, 68(6), 623–629. https://doi.org/10.1515/hf-2013-0190.

    Article  CAS  Google Scholar 

  14. Reyes, P., Mendonça, R. T., Aguayo, M. G., Rodríguez, J., Vega, B., & Fardim, P. (2013). Extraction and characterization of hemicelluloses from Pinus radiata and its feasibility for bioethanol production. Revista Arvore, 37(1), 175–180. https://doi.org/10.1590/S0100-67622013000100018.

    Article  CAS  Google Scholar 

  15. Spagnuolo, M., Hussain, M. S., Gambill, L., & Blenner, M. (2018). Alternative substrate metabolism in Yarrowia lipolytica. Frontiers in Microbiology, 9, 1077. https://doi.org/10.3389/fmicb.2018.01077.

    Article  Google Scholar 

  16. Jordan, P., Choe, J. Y., Boles, E., & Oreb, M. (2016). Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Scientific Reports, 6(1), 23502. https://doi.org/10.1038/srep23502.

    Article  CAS  Google Scholar 

  17. Lazar, Z., Neuvéglise, C., Rossignol, T., Devillers, H., Morin, N., Robak, M., Nicaud, J. M., & Coq, A. C. (2017). Characterization of hexose transporters in Yarrowia lipolytica reveals new groups of sugar porters involved in yeast growth. Fungal Genetics and Biology, 100, 1–12. https://doi.org/10.1016/j.fgb.2017.01.001.

    Article  CAS  Google Scholar 

  18. Green, J. B. A., Wright, A. P. H., Cheung, W. Y., Lancashire, W. E., & Hartley, B. S. (1988). The structure and regulation of phosphoglucose isomerase in Saccharomyces cerevisiae. Molecular and General Genetics, 215(1), 100–106. https://doi.org/10.1007/BF00331310.

    Article  CAS  Google Scholar 

  19. Wang, T., Liu, L. Y., Tang, Y. Y., Zhang, X. B., Zhang, M. D., Zheng, Y. L., & Zhang, F. D. (2012). Using the phosphomannose isomerase (PMI) gene from Saccharomyces cerevisiae for selection in rice transformation. Journal of Integrative Agriculture, 11(9), 1391–1398. https://doi.org/10.1016/S2095-3119(12)60138-5.

    Article  CAS  Google Scholar 

  20. Dourou, M., Mizerakis, P., Papanikolaou, S., & Aggelis, G. (2017). Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Applied Microbiology and Biotechnology, 101(19), 7213–7226. https://doi.org/10.1007/s00253-017-8455-6.

    Article  CAS  Google Scholar 

  21. Liang, M., Damiani, A., He, Q. P., & Wang, J. (2014). Elucidating xylose metabolism of Scheffersomyces stipitis for lignocellulosic ethanol production. ACS Sustainable Chemistry and Engineering, 2(1), 38–48. https://doi.org/10.1021/sc400265g.

    Article  CAS  Google Scholar 

  22. Aduse-Opoku, J., & Mitchell, W. J. (1988). Diauxic growth of Clostridium thermosaccharolyticum on glucose and xylose. FEMS Microbiology Letters, 50(1), 45–49. https://doi.org/10.1111/j.1574-6968.1988.tb02909.x.

    Article  CAS  Google Scholar 

  23. Does, A. L., & Bisson, L. F. (1989). Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Applied and Environmental Microbiology, 55(1), 159–164.

    Article  CAS  Google Scholar 

  24. Joshua, C. J., Dahl, R., Benke, P. I., & Keasling, J. D. (2011). Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. Journal of Bacteriology, 193(6), 1293–1301. https://doi.org/10.1128/JB.01219-10.

    Article  CAS  Google Scholar 

  25. Kim, J. H., Block, D. E., & Mills, D. A. (2010). Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 88(5), 1077–1085. https://doi.org/10.1007/s00253-010-2839-1.

    Article  CAS  Google Scholar 

  26. Hu, C., Wu, S., Wang, Q., Jin, G., Shen, H., & Zhao, Z. K. (2011). Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnology for Biofuels, 4(1), 25. https://doi.org/10.1186/1754-6834-4-25.

    Article  CAS  Google Scholar 

  27. Gong, Z., Wang, Q., Shen, H., Hu, C., Jin, G., & Zhao, Z. K. (2012). Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresource Technology, 117, 20–24. https://doi.org/10.1016/j.biortech.2012.04.063.

    Article  CAS  Google Scholar 

  28. Niehus, X., Coq, A. C., Sandoval, G., Nicaud, J. M., & Amaro, R. L. (2018). Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnology for Biofuels, 11(1), 11. https://doi.org/10.1186/s13068-018-1010-6.

    Article  CAS  Google Scholar 

  29. Poontawee, R., Yongmanitchai, W., & Limtong, S. (2017). Efficient oleaginous yeasts for lipid production from lignocellulosic sugars and effects of lignocellulose degradation compounds on growth and lipid production. Process Biochemistry, 53, 44–60. https://doi.org/10.1016/j.procbio.2016.11.013.

    Article  CAS  Google Scholar 

  30. Yamada, R., Yamauchi, A., Kashihara, T., & Ogino, H. (2017). Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochemical Engineering Journal, 128, 76–82. https://doi.org/10.1016/j.bej.2017.09.010.

    Article  CAS  Google Scholar 

  31. Yang, X., Jin, G., Gong, Z., Shen, H., Song, Y., Bai, F., & Zhao, Z. K. (2014). Simultaneous utilization of glucose and mannose from spent yeast cell mass for lipid production by Lipomyces starkeyi. Bioresource Technology, 158, 383–387. https://doi.org/10.1016/j.biortech.2014.02.121.

    Article  CAS  Google Scholar 

  32. Yu, X., Zheng, Y., Xiong, X., & Chen, S. (2014). Co-utilization of glucose, xylose and cellobiose by the oleaginous yeast Cryptococcus curvatus. Biomass and Bioenergy, 71, 340–349. https://doi.org/10.1016/j.biombioe.2014.09.023.

    Article  CAS  Google Scholar 

  33. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols, a guide to methods and applications (pp. 315–322). Academic Press.

  34. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454.

    Article  CAS  Google Scholar 

  35. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11030–11035. https://doi.org/10.1073/pnas.0404206101.

    Article  CAS  Google Scholar 

  36. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096.

    Article  CAS  Google Scholar 

  37. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

    CAS  Google Scholar 

  38. AFNOR. (1984). Recueil de normes françaises des corps gras, graines oléagineuses, produits dérivés. Paris: Association française de normalisation.

    Google Scholar 

  39. Fakas, S., Makri, A., Mavromati, M., Tselepi, M., & Aggelis, G. (2009). Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresource Technology, 100(23), 6118–6120. https://doi.org/10.1016/j.biortech.2009.06.015.

    Article  CAS  Google Scholar 

  40. Bellou, S., Makri, A., Triantaphyllidou, I. E., Papanikolaou, S., & Aggelis, G. (2014). Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology, 160(4), 807–817. https://doi.org/10.1099/mic.0.074302-0.

    Article  CAS  Google Scholar 

  41. Papanikolaou, S., Sarantou, S., Komaitis, M., & Aggelis, G. (2004). Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Journal of Applied Microbiology, 97(4), 867–875. https://doi.org/10.1111/j.1365-2672.2004.02376.x.

    Article  CAS  Google Scholar 

  42. Bergmeyer, H. U. (1974). Methods of enzymatic analysis. New York: Academic Press.

    Google Scholar 

  43. Gracy, R. W., & Noltmann, E. A. (1968). Studies on phosphomannose isomerase. Journal of Biological Chemistry, 243(11), 3161–3168 http://www.jbc.org/content/243/11/3161.short.

    CAS  Google Scholar 

  44. Bunker, R. D., Bulloch, E. M. M., Dickson, J. M. J., Loomes, K. M., & Baker, E. N. (2013). Structure and function of human xylulokinase, an enzyme with important roles in carbohydrate metabolism. Journal of Biological Chemistry, 288(3), 1643–1652. https://doi.org/10.1074/jbc.M112.427997.

    Article  CAS  Google Scholar 

  45. Kornberg, A. (1955). Isocitrate dehydrogenase of yeast. In S. P. Colowick & N. O. Kaplan (Eds.), Methods in enzymology (pp. 707–709). Academic Press.

  46. Srere, P. A. (1959). The citrate cleavage enzyme. I. Distribution and purification. Journal of Biological Chemistry, 234, 2544–2547.

    CAS  Google Scholar 

  47. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  48. Nahuelhual, L., Donoso, P., Lara, A., Núñez, D., Oyarzún, C., & Neira, E. (2007). Valuing ecosystem services of Chilean temperate rainforests. Environment, Development and Sustainability, 9(4), 481–499. https://doi.org/10.1007/s10668-006-9033-8.

    Article  Google Scholar 

  49. Cadete, R. M., Santos, R. O., Melo, M. A., Mouro, A., Gonçalves, D. L., Stambuk, B. U., Gomes, F. C. O., Lachance, M. A., & Rosa, C. A. (2009). Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Research, 9(8), 1338–1342. https://doi.org/10.1111/j.1567-1364.2009.00582.x.

    Article  CAS  Google Scholar 

  50. Martini, C., Tauk-Tornisielo, S. M., Codato, C. B., Bastos, R. G., & Ceccato-Antonini, S. R. (2016). A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media. World Journal of Microbiology and Biotechnology, 32(5), 1–9. https://doi.org/10.1007/s11274-016-2036-1.

    Article  CAS  Google Scholar 

  51. Papon, N., Savini, V., Lanoue, A., Simkin, A. J., Crèche, J., Giglioli-Guivarc’h, N., Clastre, M., Courdavault, V., & Sibirny, A. A. (2013). Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Current Genetics, 59(3), 73–90. https://doi.org/10.1007/s00294-013-0391-0.

    Article  CAS  Google Scholar 

  52. Urbina, H., Frank, R., & Blackwell, M. (2013). Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia, 105(3), 650–660. https://doi.org/10.3852/12-094.

    Article  CAS  Google Scholar 

  53. Houseknecht, J. L., Hart, E. L., Suh, S. O., & Zhou, J. J. (2011). Yeasts in the Sugiyamaella clade associated with wood-ingesting beetles and the proposal of Candida bullrunensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 61(7), 1751–1756. https://doi.org/10.1099/ijs.0.026427-0.

    Article  CAS  Google Scholar 

  54. Golubev, W. I., Blagodatskaya, V. M., Suetin, S. O., & Trotsenko, R. S. H. (1981). Pichia inositovora and Candida paludigena, two new species of yeasts isolated from peat. International Journal of Systematic and Evolutionary Microbiology, 31(1), 91–96. https://doi.org/10.1099/00207713-31-1-91.

    Article  Google Scholar 

  55. Lamarche, J., Stefani, F. O. P., Séguin, A., & Hamelin, R. C. (2011). Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions. FEMS Microbiology Ecology, 76(2), 199–208. https://doi.org/10.1111/j.1574-6941.2011.01041.x.

    Article  CAS  Google Scholar 

  56. Kurtzman, C. P., & Suzuki, M. (2010). Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience, 51(1), 2–14. https://doi.org/10.1007/s10267-009-0011-5.

    Article  CAS  Google Scholar 

  57. Kurtzman, C. P., & Robnett, C. J. (2007). Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations. FEMS Yeast Research, 7(1), 141–151. https://doi.org/10.1111/j.1567-1364.2006.00157.x.

    Article  CAS  Google Scholar 

  58. Urbina, H., & Blackwell, M. (2012). Multilocus phylogenetic study of the Scheffersomyces yeast clade and characterization of the N-terminal region of xylose reductase gene. PLoS One, 7(6), 1–13. https://doi.org/10.1371/journal.pone.0039128.

    Article  CAS  Google Scholar 

  59. Kurtzman, C. P., & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek, 73(4), 331–371.

    Article  CAS  Google Scholar 

  60. Arous, F., Azabou, S., Triantaphyllidou, I. E., Aggelis, G., Jaouani, A., Nasri, M., & Mechichi, T. (2017). Newly isolated yeasts from Tunisian microhabitats: lipid accumulation and fatty acid composition. Engineering in Life Sciences, 17(3), 226–236. https://doi.org/10.1002/elsc.201500156.

    Article  CAS  Google Scholar 

  61. Patel, A., Sindhu, D. K., Arora, N., Singh, R. P., Pruthi, V., & Pruthi, P. A. (2015). Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresource Technology, 197, 91–98. https://doi.org/10.1016/j.biortech.2015.08.039.

    Article  CAS  Google Scholar 

  62. Feofilova, E. P. (2010). The fungal cell wall: modern concepts of its composition and biological function. Microbiology, 79(6), 711–720. https://doi.org/10.1134/S0026261710060019.

    Article  CAS  Google Scholar 

  63. Nguyen, T. H., Fleet, G. H., & Rogers, P. L. (1998). Composition of the cell walls of several yeast species. Applied Microbiology and Biotechnology, 50(2), 206–212. https://doi.org/10.1007/s002530051278.

    Article  CAS  Google Scholar 

  64. Tanimura, A., Takashima, M., Sugita, T., Endoh, R., Ohkuma, M., Kishino, S., Ogawa, J., & Shima, J. (2016). Lipid production through simultaneous utilization of glucose, xylose, and l-arabinose by Pseudozyma hubeiensis: a comparative screening study. Applied Microbiology and Biotechnology Express, 6(1), 58. https://doi.org/10.1186/s13568-016-0236-6.

    Article  CAS  Google Scholar 

  65. Tsigie, Y. A., Wang, C. Y., Truong, C. T., & Ju, Y. H. (2011). Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresource Technology, 102(19), 9216–9222. https://doi.org/10.1016/j.biortech.2011.06.047.

    Article  CAS  Google Scholar 

  66. Gong, Z., Shen, H., Wang, Q., Yang, X., Xie, H., & Zhao, Z. K. (2013). Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnology for Biofuels, 6(1), 36. https://doi.org/10.1186/1754-6834-6-36.

    Article  CAS  Google Scholar 

  67. Zhao, X., Kong, X., Hua, Y., Feng, B., & Zhao, Z. (2008). Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. European Journal of Lipid Science and Technology, 110(5), 405–412. https://doi.org/10.1002/ejlt.200700224.

    Article  CAS  Google Scholar 

  68. Arous, F., Mechichi, T., Nasri, M., & Aggelis, G. (2016). Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii. Microbiology, 162(2), 1080–1090. https://doi.org/10.1099/mic.0.000298.

    Article  CAS  Google Scholar 

  69. Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1–51. https://doi.org/10.1016/S0065-2164(02)51000-5.

    Article  CAS  Google Scholar 

  70. Daskalaki, A., Perdikouli, N., Aggeli, D., & Aggelis, G. (2019). Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Applied Microbiology and Biotechnology, 103(20), 8585–8596. https://doi.org/10.1007/s00253-019-10088-7.

    Article  CAS  Google Scholar 

  71. Chatzifragkou, A., Makri, A., Belka, A., Bellou, S., Mavrou, M., Mastoridou, M., Mystrioti, P., Onjaro, G., Aggelis, G., & Papanikolaou, S. (2011). Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy, 36(2), 1097–1108. https://doi.org/10.1016/j.energy.2010.11.040.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Marianna Dourou for technical assistance.

Funding

The project was financially supported by the CONICYT PFCHA/DOCTORADO BECAS CHILE/2018-21180068, the University of Patras, Greece, and the Universidad de Concepción, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Aggelis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdés, G., Mendonça, R.T., Parra, C. et al. Patterns of Lignocellulosic Sugar Assimilation and Lipid Production by Newly Isolated Yeast Strains From Chilean Valdivian Forest. Appl Biochem Biotechnol 192, 1124–1146 (2020). https://doi.org/10.1007/s12010-020-03398-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03398-4

Keywords

Navigation