Skip to main content
Log in

Enzyme Immobilization over Polystyrene Surface Using Cysteine Functionalized Copper Nanoparticle as a Linker Molecule

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The work focus on the development of a simple and efficient method of enzyme immobilization over a polystyrene surface using cysteine functionalized copper nanoparticle as linker molecule. The polystyrene surface is activated by generating –NO2 groups by the process of nitration reaction. The nitrated polystyrene plate then is silanized with (3-mercaptopropyl) trimethoxysilane (MPTS) followed with the coupling of cysteine-capped copper nanoparticles on the silanized surface through thiol moiety. A nanoparticle layer is thus created over the polystyrene surface which is efficiently used for covalent immobilization of urease via an amino group of cysteine through glutaraldehyde treatment. The technique resulted in an enhancement in the enzymatic activity by 72.37% over the soluble counterpart. The immobilized enzyme also exhibited appreciable reusability of about 10 times with activity retention of 82% of its initial activity. Immobilization also offered an increased thermal and pH stability to the immobilized enzyme over the soluble enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis and Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082.

    Article  CAS  Google Scholar 

  2. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018.

    Article  CAS  Google Scholar 

  3. Wu, C.-W., Lee, J.-G., & Lee, W.-C. (1998). Protein and enzyme immobilization on non-porous microspheres of polystyrene. Biotechnology and Applied Biochemistry, 27, 225–230. https://doi.org/10.1111/j.1470-8744.1998.tb00498.x.

    Article  CAS  Google Scholar 

  4. Feng, B., Wang, C., Xie, X., Feng, X., Li, Y., & Cao, Z. (2014). A new method for multilayered, site-directed immobilization of antibody on polystyrene surface. Biochemical and Biophysical Research Communications, 450(1), 429–432. https://doi.org/10.1016/j.bbrc.2014.05.135.

    Article  CAS  PubMed  Google Scholar 

  5. Kumada, Y., Zhao, C., Ishimura, R., Imanaka, H., Imamura, K., & Nakanishi, K. (2007). Protein-protein interaction analysis using an affinity peptide tag and hydrophilic polystyrene plate. Journal of Biotechnology, 128(2), 354–361. https://doi.org/10.1016/j.jbiotec.2006.09.018.

    Article  CAS  PubMed  Google Scholar 

  6. Page, J. D., Derango, R., & Huang, A. E. (1998). Chemical modification of polystyrene’s surface and its effect on immobilized antibodies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 132, 193–201.

    Article  CAS  Google Scholar 

  7. Kaur, J., Boro, R. C., Wangoo, N., Singh, K. R., & Suri, C. R. (2008). Direct hapten coated immunoassay format for the detection of atrazine and 2,4-dichlorophenoxyacetic acid herbicides. Analytica Chimica Acta, 607(1), 92–99. https://doi.org/10.1016/j.aca.2007.11.017.

    Article  CAS  PubMed  Google Scholar 

  8. North, S. H., Lock, E. H., Cooper, C. J., Franek, J. B., Taitt, C. R., & Walton, S. G. (2010). Plasma-based surface modification of polystyrene microtiter plates for covalent immobilization of biomolecules. ACS Applied Materials and Interfaces, 2(10), 2884–2891. https://doi.org/10.1021/am100566e

  9. Chin, N. W., & Lanks, K. W. (1977). Cevalent attachment of lactoperoxidase to polystyrene tissue culture flasks. Analytical Biochemistry, 83(2), 709–719. https://doi.org/10.1016/0003-2697(77)90076-8.

  10. Filippusson, H., & Hornby, W. E. (1970). The preparation and properties of yeast beta-fructofuranosidase chemically attached to polystyrene. The Biochemical journal, 120(1), 215–219. https://doi.org/10.1042/bj1200215.

  11. Zhang, Y., Cai, Y., Li, L., Qian, Y., & Lu, L. (2012). High-throughput biosensing of neurotoxic insecticides using polystyrene microplate-immobilized acetylcholinesterase. Analytical Methods, 4(11), 3830. https://doi.org/10.1039/c2ay25774b.

    Article  CAS  Google Scholar 

  12. Brzoska, J. B., Azouz, I. B., & Rondelez, F. (1994). Silanization of solid substrates: a step toward reproducibility. Langmuir, 10(11), 4367–4373. https://doi.org/10.1021/la00023a072.

    Article  CAS  Google Scholar 

  13. Wei, C., Ding, S., You, H., Zhang, Y., Wang, Y., Yang, X., & Yuan, J. (2011). An immunoassay for dibutyl phthalate based on direct hapten linkage to the polystyrene surface of microtiter plates. PLoS One, 6(12), e29196. https://doi.org/10.1371/journal.pone.0029196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sunkara, V., & Cho, Y. K. (2013). Aminosilane layers on the plasma activated thermoplastics: influence of solvent on its structure and morphology. Journal of Colloid and Interface Science, 411, 122–128. https://doi.org/10.1016/j.jcis.2013.08.038.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, N., & Upadhyay, L. S. B. L. S. B. (2016). Facile and green synthesis of highly stable l-cysteine functionalized copper nanoparticles. Applied Surface Science, 385, 225–233. https://doi.org/10.1016/j.apsusc.2016.05.125.

    Article  CAS  Google Scholar 

  16. Kumar, S., Dwevedi, A., & Kayastha, A. M. (2009). Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability: analytical applications. Journal of Molecular Catalysis B: Enzymatic, 58(1–4), 138–145. https://doi.org/10.1016/j.molcatb.2008.12.006.

    Article  CAS  Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of biological chemistry, 193(1), 265–275. https://doi.org/10.1016/0922-338X(96)89160-4.

  18. Andkarl, C. (1977). Covalent attachment of lactoperoxidase tissue culture flasks to polystyrene, 719, 709–719.

  19. Vashist, S. K., Schneider, E. M., & Luong, J. H. T. (2015). Rapid sandwich ELISA-based in vitro diagnostic procedure for the highly-sensitive detection of human fetuin A. Biosensors and Bioelectronics, 67, 73–78. https://doi.org/10.1016/j.bios.2014.06.058.

    Article  CAS  PubMed  Google Scholar 

  20. Lala, N. L., Deivaraj, T. C. C., & Lee, J. Y. (2005). Auto-deposition of gold on chemically modified polystyrene beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1–3), 119–124. https://doi.org/10.1016/j.colsurfa.2005.06.073.

    Article  CAS  Google Scholar 

  21. Dharanivasan, G., Rajamuthuramalingam, T., Michael Immanuel Jesse, D., Rajendiran, N., & Kathiravan, K. (2015). Gold nanoparticles assisted characterization of amine functionalized polystyrene multiwell plate and glass slide surfaces. Applied Nanoscience, 5(1), 39–50. https://doi.org/10.1007/s13204-013-0290-1.

    Article  CAS  Google Scholar 

  22. Ispirli Doğaç, Y., Deveci, İ., Teke, M., & Mercimek, B. (2014). TiO2 beads and TiO2-chitosan beads for urease immobilization. Materials Science and Engineering: C, 42, 429–435. https://doi.org/10.1016/j.msec.2014.05.058.

    Article  CAS  Google Scholar 

  23. Reddy, K. R. C., & Kayastha, A. M. (2006). Improved stability of urease upon coupling to alkylamine and arylamine glass and its analytical use. Journal of Molecular Catalysis B: Enzymatic, 38(2), 104–112. https://doi.org/10.1016/j.molcatb.2005.12.001.

    Article  CAS  Google Scholar 

  24. Sahoo, B., Sahu, S. K., & Pramanik, P. (2011). A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. Journal of Molecular Catalysis B: Enzymatic, 69(3–4), 95–102. https://doi.org/10.1016/j.molcatb.2011.01.001.

    Article  CAS  Google Scholar 

  25. Motevalizadeh, S. F., Khoobi, M., Sadighi, A., Khalilvand-Sedagheh, M., Pazhouhandeh, M., Ramazani, A., et al. (2015). Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions. Journal of Molecular Catalysis B: Enzymatic, 120, 75–83. https://doi.org/10.1016/j.molcatb.2015.06.013.

    Article  CAS  Google Scholar 

  26. Krishna, B. L., Singh, A. N., Patra, S., & Dubey, V. K. (2011). Purification, characterization and immobilization of urease from Momordica charantia seeds. Process Biochemistry, 46(7), 1486–1491. https://doi.org/10.1016/j.procbio.2011.03.022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata Sheo Bachan Upadhyay.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Upadhyay, L.S.B. Enzyme Immobilization over Polystyrene Surface Using Cysteine Functionalized Copper Nanoparticle as a Linker Molecule. Appl Biochem Biotechnol 191, 1247–1257 (2020). https://doi.org/10.1007/s12010-020-03257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03257-2

Keywords

Navigation