Skip to main content
Log in

Pre-treatment with Beta Carotene Gives Protection Against Nephrotoxicity Induced by Bromobenzene via Modulation of Antioxidant System, Pro-inflammatory Cytokines and Pro-apoptotic Factors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bromobenzene is an environmental toxin which causes hepatotoxicity, and the secondary metabolites on biotransformation cause nephrotoxicity. The objective of this study was to assess the alleviation of the nephrotoxic effect of bromobenzene by beta carotene in female Wistar albino rats. Beta carotene (10 mg/kg b.w.p.o.) was delivered orally to the rats for 9 days before bromobenzene (10 mM/kg b.w.p.o.) was intragastrically intubated. Kidney markers, antioxidant status and lipid peroxidation were evaluated. In addition, the levels of TNF-α, IL-6 and IL-1β were measured in serum and in kidney tissue homogenate using ELISA. Caspase, COX-2 and NF-κB were measured with the help of Western blotting. Histopathological analysis of the kidney was done for the control and experimental rats. Bromobenzene induction caused elevation in levels of creatinine, urea, uric acid, cytokines and lipid per oxidation along with deterioration in histological observations and antioxidant status. Pre-treatment with beta carotene significantly (*p < 0.05) normalised the levels of kidney markers and pro-inflammatory cytokines. It also reduced oxidative stress and lipid peroxidation, as shown by improved antioxidant status. The anti-apoptotic activity was evidenced by inhibition of protein expression of caspase, COX-2 and NF-κB. This significant reversal (*p < 0.05) of the above variations in comparison with the control group as noticed in the bromobenzene-administered rats demonstrates that beta carotene possesses promising nephroprotective effect through its antioxidant, anti-inflammatory and anti-apoptotic activity and therefore suggests its use as a potential therapeutic agent for protection from bromobenzene and hence environmental pollutant toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Vleet, T. R., & Schnellmann, R. G. (2003). Toxic nephropathy: environmental chemicals. Seminars in Nephrology, 23(5), 500–508.

    Article  Google Scholar 

  2. Pfister, F., Büttner-Herold, M., & Amann, K. (2018). (Immun-)Pathologie von Medikamentennebenwirkungen in der Niere. Der Pathologe., 39(6), 576–582. https://doi.org/10.1007/s00292-018-0475-1.

    Article  CAS  PubMed  Google Scholar 

  3. Elseweidy, M. M., Askar, M. E., Elswefy, S. E., & Shawky, M. (2018). Nephrotoxicity induced by cisplatin intake in experimental rats and therapeutic approach of using mesenchymal stem cells and spironolactone. Applied Biochemistry and Biotechnology, 184(4), 1390–1403. https://doi.org/10.1007/s12010-017-2631-0.

    Article  CAS  PubMed  Google Scholar 

  4. Gopi, S., & Setty, O. H. (2010). Beneficial effect of the administration of Hemidesmus indicus against bromobenzene induced oxidative stress in rat liver mitochondria. Journal of Ethnopharmacology, 127(1), 200–203. https://doi.org/10.1016/j.jep.2009.09.043.

    Article  CAS  PubMed  Google Scholar 

  5. Hamed, M. A., El-Rigal, N. S., & Ali, S. A. (2013). Effects of black seed oil on resolution of hepato-renal toxicity induced by bromobenzene in rats. European Review for Medical and Pharmacological Sciences, 17(5), 569–581.

    CAS  PubMed  Google Scholar 

  6. Madhu, C., & Klaassen, C. D. (1992). Bromobenzene-glutathione excretion into bile reflects toxic activation of bromobenzene in rats. Toxicology Letters, 60(2), 227–236.

    Article  CAS  Google Scholar 

  7. Jollow, D. J., Mitchell, J. R., Zampaglione, N., & Gillette, J. R. (1974). Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology, 11(3), 151–169. https://doi.org/10.1159/000136485.

    Article  CAS  PubMed  Google Scholar 

  8. Abraham, P., Ramamoorthy, H., & Isaac, B. (2013). Depletion of the cellular antioxidant system contributes to tenofovir disoproxil fumarate - induced mitochondrial damage and increased oxido-nitrosative stress in the kidney. Journal of Biomedical Science, 20(1), 61. https://doi.org/10.1186/1423-0127-20-61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalantari, H., Jalali, M., Jalali, A., Salimi, A., Alhalvachi, F., Varga, B., Juhasz, B., Jakab, A., Kemeny-Beke, A., Gesztelyi, R., Tosaki, A., & Zsuga, J. (2011). Protective effect of Cassia fistula fruit extract on bromobenzene-induced nephrotoxicity in mice. Human & Experimental Toxicology, 30(10), 1710–1715. https://doi.org/10.1177/0960327110396532.

    Article  Google Scholar 

  10. Putakala, M., Gujjala, S., Nukala, S., & Desireddy, S. (2017). Beneficial effects of Phyllanthus amarus against high fructose diet induced insulin resistance and hepatic oxidative stress in male Wistar rats. Applied Biochemistry and Biotechnology, 183(3), 744–764. https://doi.org/10.1007/s12010-017-2461-0.

    Article  CAS  PubMed  Google Scholar 

  11. Sarker, U., & Oba, S. (2018). Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 186(4), 999–1016. https://doi.org/10.1007/s12010-018-2784-5.

    Article  CAS  PubMed  Google Scholar 

  12. da Rocha, P. D. S., Campos, J. F., Nunes-Souza, V., Vieira, M. d. C., Boleti, A. P. d. A., Rabelo, L. A., & de Picoli Souza, K. (2018). Antioxidant and protective effects of Schinus terebinthifolius Raddi against doxorubicin-induced toxicity. Applied Biochemistry and Biotechnology, 184(3), 869–884. https://doi.org/10.1007/s12010-017-2589-y.

    Article  CAS  PubMed  Google Scholar 

  13. Hirahatake, K. M., Jacobs, D. R., Gross, M. D., Bibbins-Domingo, K. B., Shlipak, M. G., Mattix-Kramer, H., & Odegaard, A. O. (2018). The Association of serum carotenoids, tocopherols, and ascorbic acid with rapid kidney function decline: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation., 29(1), 65–73. https://doi.org/10.1053/j.jrn.2018.05.008.

    Article  CAS  Google Scholar 

  14. Darwish, W. S., Ikenaka, Y., Nakayama, S., Mizukawa, H., Thompson, L. A., & Ishizuka, M. (2018). β-Carotene and retinol reduce benzo[a]pyrene-induced mutagenicity and oxidative stress via transcriptional modulation of xenobiotic metabolizing enzymes in human HepG2 cell line. Environmental Science and Pollution Research International, 25(7), 6320–6328. https://doi.org/10.1007/s11356-017-0977-z.

    Article  CAS  PubMed  Google Scholar 

  15. Acar, A., Yalçin, E., & Çavuşoğlu, K. (2018). Protective effects of β-carotene against ammonium sulfate toxicity: biochemical and histopathological approach in mice model. Journal of Medicinal Food, 21(11):1145–1149. https://doi.org/10.1089/jmf.2017.4164

    Article  CAS  Google Scholar 

  16. Bast, A., Haenen, G. R., van den Berg, R., & van den Berg, H. (1998). Antioxidant effects of carotenoids. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International De Vitaminologie Et De Nutrition, 68(6), 399–403.

    CAS  PubMed  Google Scholar 

  17. Beta-carotene. (2006). In Drugs and Lactation Database (LactMed). Bethesda (MD): National Library of 469 Medicine (US). LactMed Record Number 985 Bookshelf ID: NBK501906PMID: CASRN: 7235–40–7Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK501906/

  18. Zhang, Y., Zhu, X., Huang, T., Chen, L., Liu, Y., Li, Q., Song, J., Ma, S., Zhang, K., Yang, B., & Guan, F. (2016). β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro. Toxicology Letters, 261, 49–58. https://doi.org/10.1016/j.toxlet.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  19. Das, R., Das, A., Roy, A., Kumari, U., Bhattacharya, S., & Haldar, P. K. (2015). β-Carotene ameliorates arsenic-induced toxicity in albino mice. Biological Trace Element Research, 164(2), 226–233. https://doi.org/10.1007/s12011-014-0212-4.

    Article  CAS  PubMed  Google Scholar 

  20. Tan, H.-L., Moran, N. E., Cichon, M. J., Riedl, K. M., Schwartz, S. J., Erdman, J. W., et al. (2014). β-Carotene-9′,10′-oxygenase status modulates the impact of dietary tomato and lycopene on hepatic nuclear receptor-, stress-, and metabolism-related gene expression in mice. The Journal of Nutrition, 144(4), 431–439. https://doi.org/10.3945/jn.113.186676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sarada, S. K. S., Dipti, P., Anju, B., Pauline, T., Kain, A. K., Sairam, M., Sharma, S. K., Ilavazhagan, G., Kumar, D., & Selvamurthy, W. (2002). Antioxidant effect of beta-carotene on hypoxia induced oxidative stress in male albino rats. Journal of Ethnopharmacology, 79(2), 149–153.

    Article  CAS  Google Scholar 

  22. Vedi, M., Rasool, M., & Sabina, E. P. (2014). Amelioration of bromobenzene hepatotoxicity by Withania somnifera pretreatment: role of mitochondrial oxidative stress. Toxicology Reports, 1, 629–638. https://doi.org/10.1016/j.toxrep.2014.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vedi, M., Rasool, M., & Sabina, E. P. (2014). Protective effect of administration of Withania somifera against bromobenzene induced nephrotoxicity and mitochondrial oxidative stress in rats. Renal Failure, 36(7), 1095–1103. https://doi.org/10.3109/0886022X.2014.918812.

    Article  CAS  PubMed  Google Scholar 

  24. Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474.

    Article  CAS  Google Scholar 

  25. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394.

    Article  CAS  Google Scholar 

  26. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249(22), 7130–7139.

    CAS  PubMed  Google Scholar 

  27. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science (New York, N.Y.), 179(4073), 588–590. https://doi.org/10.1126/science.179.4073.588

    Article  CAS  Google Scholar 

  28. Moron, M., Depierre, J., & Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA) - General Subjects, 582(1), 67–78. https://doi.org/10.1016/0304-4165(79)90289-7.

    Article  CAS  Google Scholar 

  29. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.

    Article  CAS  Google Scholar 

  30. Reyes, J. L., Molina-Jijón, E., Rodríguez-Muñoz, R., Bautista-García, P., Debray-García, Y., & Namorado, M. d. C. (2013). Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity. BioMed Research International, 2013, 1–14. https://doi.org/10.1155/2013/730789.

    Article  CAS  Google Scholar 

  31. Verma, N., Yadav, A., Bal, S., Gupta, R., & Aggarwal, N. (2019). In vitro studies on ameliorative effects of limonene on cadmium-induced genotoxicity in cultured human peripheral blood lymphocytes. Applied Biochemistry and Biotechnology, 187(4), 1384–1397. https://doi.org/10.1007/s12010-018-2881-5.

    Article  CAS  PubMed  Google Scholar 

  32. Tavafi, M., & Ahmadvand, H. (2011). Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats. Tissue & Cell, 43(6), 392–397. https://doi.org/10.1016/j.tice.2011.09.001.

    Article  CAS  Google Scholar 

  33. Jaeschke, H., McGill, M. R., & Ramachandran, A. (2012). Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metabolism Reviews, 44(1), 88–106. https://doi.org/10.3109/03602532.2011.602688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dounousi, E., Papavasiliou, E., Makedou, A., Ioannou, K., Katopodis, K. P., Tselepis, A., Siamopoulos, K. C., & Tsakiris, D. (2006). Oxidative stress is progressively enhanced with advancing stages of CKD. American Journal of Kidney Diseases, 48(5), 752–760. https://doi.org/10.1053/j.ajkd.2006.08.015.

    Article  CAS  PubMed  Google Scholar 

  35. Himmelfarb, J. (2004). Oxidative stress is increased in critically ill patients with acute renal failure. Journal of the American Society of Nephrology, 15(9), 2449–2456. https://doi.org/10.1097/01.ASN.0000138232.68452.3B.

    Article  CAS  PubMed  Google Scholar 

  36. Singh, R., Kaur, B., Kalina, I., Popov, T. A., Georgieva, T., Garte, S., Binkova, B., Sram, R. J., Taioli, E., & Farmer, P. B. (2007). Effects of environmental air pollution on endogenous oxidative DNA damage in humans. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 620(1–2), 71–82. https://doi.org/10.1016/j.mrfmmm.2007.02.024.

    Article  CAS  PubMed  Google Scholar 

  37. Therond, P. (2006). Dommages créés aux biomolécules (lipides, protéines, ADN) par le stress oxydant. Annales Pharmaceutiques Françaises, 64(6), 383–389. https://doi.org/10.1016/S0003-4509(06)75333-0.

    Article  CAS  PubMed  Google Scholar 

  38. Yu, H., Ge, Y., Wang, Y., Lin, C.-T., Li, J., Liu, X., Zang, T., Xu, J., Liu, J., Luo, G., & Shen, J. (2007). A fused selenium-containing protein with both GPx and SOD activities. Biochemical and Biophysical Research Communications, 358(3), 873–878. https://doi.org/10.1016/j.bbrc.2007.05.007.

    Article  CAS  PubMed  Google Scholar 

  39. Monks, T. J., & Lau, S. S. (1990). Nephrotoxicity of quinol/quinone-linked S-conjugates. Toxicology Letters, 53(1–2), 59–67.

    Article  CAS  Google Scholar 

  40. Szymonik-Lesiuk, S., Czechowska, G., Stryjecka-Zimmer, M., Słomka, M., Madro, A., Celiński, K., & Wielosz, M. (2003). Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. Journal of Hepato-Biliary-Pancreatic Surgery, 10(4), 309–315. https://doi.org/10.1007/s00534-002-0824-5.

    Article  PubMed  Google Scholar 

  41. Kluwe, W. M., Maronpot, R. R., Greenwell, A., & Harrington, F. (1984). Interactions between bromobenzene dose, glutathione concentrations, and organ toxicities in single- and multiple-treatment studies. Toxicological Sciences, 4(6), 1019–1028. https://doi.org/10.1093/toxsci/4.6.1019.

    Article  CAS  Google Scholar 

  42. Locke, S. J., & Brauer, M. (1991). The response of the rat liver in situ to bromobenzene—in vivo proton magnetic resonance imaging and 31P magnetic resonance spectroscopy studies. Toxicology and Applied Pharmacology, 110(3), 416–428. https://doi.org/10.1016/0041-008X(91)90043-E.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, B. H., Zuzel, K. A., Rahman, K., & Billington, D. (1998). Protective effects of aged garlic extract against bromobenzene toxicity to precision cut rat liver slices. Toxicology, 126(3), 213–222. https://doi.org/10.1016/S0300-483X(98)00018-3.

    Article  CAS  PubMed  Google Scholar 

  44. Abdel Moneim, A. E., Dkhil, M. A., & Al-Quraishy, S. (2011). The protective effect of flaxseed oil on lead acetate-induced renal toxicity in rats. Journal of Hazardous Materials, 194, 250–255. https://doi.org/10.1016/j.jhazmat.2011.07.097.

    Article  CAS  PubMed  Google Scholar 

  45. Choudhary, A. K., & Devi, R. S. (2014). Serum biochemical responses under oxidative stress of aspartame in wistar albino rats. Asian Pacific Journal of Tropical Disease, 4, S403–S410. https://doi.org/10.1016/S2222-1808(14)60478-3.

    Article  CAS  Google Scholar 

  46. Comporti, M. (1987). Glutathione depleting agents and lipid peroxidation. Chemistry and Physics of Lipids, 45(2–4), 143–169. https://doi.org/10.1016/0009-3084(87)90064-8.

    Article  CAS  PubMed  Google Scholar 

  47. Comporti, M., Maellaro, E., Del Bello, B., & Casini, A. F. (1991). Glutathione depletion: Its effects on other antioxidant systems and hepatocellular damage. Xenobiotica, 21(8), 1067–1076. https://doi.org/10.3109/00498259109039546.

    Article  CAS  PubMed  Google Scholar 

  48. Bailey, S. M., & Cunningham, C. C. (2002). Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radical Biology & Medicine, 32(1), 11–16.

    Article  CAS  Google Scholar 

  49. S, J. P., & Evan Prince, S. (2018). Diclofenac-induced renal toxicity in female Wistar albino rats is protected by the pre-treatment of aqueous leaves extract of Madhuca longifolia through suppression of inflammation, oxidative stress and cytokine formation. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 98, 45–51. https://doi.org/10.1016/j.biopha.2017.12.028.

    Article  CAS  Google Scholar 

  50. Ratliff, B. B., Abdulmahdi, W., Pawar, R., & Wolin, M. S. (2016). Oxidant mechanisms in renal injury and disease. Antioxidants & Redox Signaling, 25(3), 119–146. https://doi.org/10.1089/ars.2016.6665.

    Article  CAS  Google Scholar 

  51. Li, J.-M., & Shah, A. M. (2004). Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287(5), R1014–R1030. https://doi.org/10.1152/ajpregu.00124.2004.

    Article  CAS  PubMed  Google Scholar 

  52. Kawata, A., Murakami, Y., Suzuki, S., & Fujisawa, S. (2018). Anti-inflammatory activity of β-carotene, lycopene and tri-n-butylborane, a scavenger of reactive oxygen species. In Vivo (Athens, Greece), 32(2), 255–264. https://doi.org/10.21873/invivo.11232.

    Article  CAS  Google Scholar 

  53. Suraiya, S., Jang, W. J., Cho, H. J., Choi, Y. B., Park, H. D., Kim, J.-M., & Kong, I.-S. (2019). Immunomodulatory effects of Monascus spp.-fermented Sacccharina japonica extracts on the cytokine gene expression of THP-1 cells. Applied Biochemistry and Biotechnology, 188(2), 498–513. https://doi.org/10.1007/s12010-018-02930-x.

    Article  CAS  PubMed  Google Scholar 

  54. Benedetti, G., Fredriksson, L., Herpers, B., Meerman, J., van de Water, B., & de Graauw, M. (2013). TNF-α-mediated NF-κB survival signaling impairment by cisplatin enhances JNK activation allowing synergistic apoptosis of renal proximal tubular cells. Biochemical Pharmacology, 85(2), 274–286. https://doi.org/10.1016/j.bcp.2012.10.012.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, L., Ouyang, L., Lin, S., Chen, S., Liu, Y., Zhou, W., & Wang, X. (2018). Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. International Immunopharmacology, 61, 92–99. https://doi.org/10.1016/j.intimp.2018.05.022.

    Article  CAS  PubMed  Google Scholar 

  56. Rodríguez-Rodríguez, E., López-Sobaler, A. M., Navia, B., Andrés, P., Jiménez-Ortega, A. I., & Ortega, R. M. (2017). β-Carotene concentration and its association with inflammatory biomarkers in Spanish schoolchildren. Annals of Nutrition & Metabolism, 71(1–2), 80–87. https://doi.org/10.1159/000479009.

    Article  CAS  Google Scholar 

  57. Liu, X.–Y., Hwang, E., Park, B., Xiao, Y.–K., & Yi, T.–H. (2019). Photoprotective and anti–inflammatory properties of vina–ginsenoside R7 ameliorate ultraviolet B–induced photodamage in normal human dermal fibroblasts. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-019-03027-9 https://doi.org/10.1007/s12010-019-03027-9.

  58. Stepień, A., Izdebska, M., & Grzanka, A. (2007). The types of cell death. Postepy Higieny I Medycyny Doswiadczalnej (Online), 61, 420–428.

    Google Scholar 

  59. Shang, Y., Myers, M., & Brown, M. (2002). Formation of the androgen receptor transcription complex. Molecular Cell, 9(3), 601–610.

    Article  CAS  Google Scholar 

  60. Choudhary, G. S., Al-harbi, S., & Almasan, A. (2015). Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. In G. Mor & A. B. Alvero (Eds.), Apoptosis and Cancer (Vol. 1219, pp. 1–9). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-1661-0_1.

    Chapter  Google Scholar 

  61. Rossi, S. P., Windschüttl, S., Matzkin, M. E., Rey-Ares, V., Terradas, C., Ponzio, R., Puigdomenech, E., Levalle, O., Calandra, R. S., Mayerhofer, A., & Frungieri, M. B. (2016). Reactive oxygen species (ROS) production triggered by prostaglandin D2 (PGD2) regulates lactate dehydrogenase (LDH) expression/activity in TM4 Sertoli cells. Molecular and Cellular Endocrinology, 434, 154–165. https://doi.org/10.1016/j.mce.2016.06.021.

    Article  CAS  PubMed  Google Scholar 

  62. Cillero-Pastor, B., Caramés, B., Lires-Deán, M., Vaamonde-García, C., Blanco, F. J., & López-Armada, M. J. (2008). Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes. Arthritis and Rheumatism, 58(8), 2409–2419. https://doi.org/10.1002/art.23644.

    Article  CAS  PubMed  Google Scholar 

  63. Korashy, H. M., & El-Kadi, A. O. S. (2008). NF-κB and AP-1 are key signaling pathways in the modulation of NAD(P)H:quinone oxidoreductase 1 gene by mercury, lead, and copper. Journal of Biochemical and Molecular Toxicology, 22(4), 274–283. https://doi.org/10.1002/jbt.20238.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, G., & Ghosh, S. (2001). Toll-like receptor–mediated NF-κB activation: a phylogenetically conserved paradigm in innate immunity. Journal of Clinical Investigation, 107(1), 13–19. https://doi.org/10.1172/JCI11837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chew, B. P., & Park, J. S. (2004). Carotenoid action on the immune response. The Journal of Nutrition, 134(1), 257S–261S. https://doi.org/10.1093/jn/134.1.257S.

    Article  CAS  PubMed  Google Scholar 

  66. Abu Bakar, M. H., Azmi, M. N., Shariff, K. A., & Tan, J. S. (2019). Withaferin A protects against high-fat diet-induced obesity via attenuation of oxidative stress, inflammation, and insulin resistance. Applied Biochemistry and Biotechnology, 188(1), 241–259. https://doi.org/10.1007/s12010-018-2920-2.

    Article  CAS  PubMed  Google Scholar 

  67. Portt, L., Norman, G., Clapp, C., Greenwood, M., & Greenwood, M. T. (2011). Anti-apoptosis and cell survival: a review. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1813(1), 238–259. https://doi.org/10.1016/j.bbamcr.2010.10.010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to VIT University for extending the required facilities to carry out this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Prince Sabina.

Ethics declarations

Approval was given by the ethical committee of the institution, VIT University, Vellore, India (VIT/IAEC/13/Feb13/20), for the experimental procedure.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkara, P.J., Sabina, E.P. Pre-treatment with Beta Carotene Gives Protection Against Nephrotoxicity Induced by Bromobenzene via Modulation of Antioxidant System, Pro-inflammatory Cytokines and Pro-apoptotic Factors. Appl Biochem Biotechnol 190, 616–633 (2020). https://doi.org/10.1007/s12010-019-03111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03111-0

Keywords

Navigation