Skip to main content
Log in

Reduction of the Cytotoxicity of Copper (II) Oxide Nanoparticles by Coating with a Surface-Binding Peptide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Copper (II) oxide nanoparticles (CuO-NPs) have been studied as potential antimicrobial agents, similar to silver or platinum nanoparticles. However, the use of excess NPs is limited by their safety and toxicity in beneficial microflora and human cells. In this study, we evaluated the cytotoxicity of CuO-NPs by coating with a novel cyclic peptide, CuO binding peptide 1 (CuBP1), cyclic-SCATPFSPQVCS, which binds to the surface of CuO-NPs. CuBP1 was identified using biopanning of a T7 phage display system and was found to promote the aggregation of CuO-NPs under mild conditions. The treated CuO-NPs with CuBP1 caused the reduction of the cytotoxicity against Escherichia coli, Lactobacillus helveticus, and five other microorganisms, including bacteria and eukaryotes. Similar effects were also demonstrated against human embryonic kidney (HEK293) cells in vitro. Our findings suggested that the CuO-NPs coated with a surface-binding peptide may have applications as a safe antimicrobial agent without excessive cytotoxic activity against beneficial microflora and human cells. Moreover, a similar tendency may be achieved with other metal particles, such as silver or platinum NPs, by using optimal metal binding peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gawande, M. B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chemical Reviews, 116(6), 3722–3811.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, D.-W., Yi, T.-H., & Chen, C.-H. (2005). Cu nanoparticles derived from CuO electrodes in lithium cells. Nanotechnology, 16(10), 2338–2341.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J., Wang, J., Fu, Y., Zhang, B., & Xie, Z. (2015). Sonochemistry-synthesized CuO nanoparticles as an anode interfacial material for efficient and stable polymer solar cells. RSC Advances, 5(36), 28786–28793.

    Article  CAS  Google Scholar 

  4. Manimaran, R., Palaniradja, K., Alagumurthi, N., Sendhilnathan, S., & Hussain, J. (2013). Preparation and characterization of copper oxide nanofluid for heat transfer applications. Applied Nanoscience, 4, 163–167.

    Article  CAS  Google Scholar 

  5. Tamilvanan, A., Balamurugan, K., Ponappa, K., & Kumar, B. M. (2014). Copper nanoparticles: synthetic strategies, properties and multifunctional application. International Journal of Nanoscience, 13, 1–17.

    Article  CAS  Google Scholar 

  6. Grigore, M., Biscu, E., Holban, A., Gestal, M., & Grumezescu, A. (2016). Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals, 9(4), 75.

    Article  PubMed Central  CAS  Google Scholar 

  7. Li, Y., Hong, M., Lin, Y., Bin, Q., Lin, Z., Cai, Z., & Chen, G. (2012). Highly sensitive electrochemical immunoassay for H1N1 influenza virus based on copper-mediated amplification. Chemical Communications, 48(52), 6562–6564.

    Article  CAS  PubMed  Google Scholar 

  8. Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013). Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces, B: Biointerfaces, 101, 430–433.

    Article  CAS  PubMed  Google Scholar 

  9. Sikora, P., Augustyniak, A., Cendrowski, K., Nawrotek, P., & Mijowska, E. (2018). Antimicrobial activity of Al2O3, CuO, Fe3O4, and ZnO nanoparticles in scope of their further application in cement-based building materials. Nanomaterials, 8(4), 212.

    Article  PubMed Central  CAS  Google Scholar 

  10. Ahamed, M., Alhadlaq, H. A., Khan, M. A. M., Karuppiah, P., & Al-Dhabi, N. A. (2014). Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/637858

    Article  CAS  Google Scholar 

  11. Wang, Y., Yang, F., Zhang, H. X., Zi, X. Y., Pan, X. H., Chen, F., Luo, W. D., Li, J. X., Zhu, H. Y., & Hu, Y. P. (2013). Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death & Disease, 4(8), e783.

    Article  CAS  Google Scholar 

  12. Vinardell, M., & Mitjans, M. (2015). Antitumor activities of metal oxide nanoparticles. Nanomaterials, 5(2), 1004–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pant, A. B., Siddiqui, M. A., Alhadlaq, H. A., Ahmad, J., Al-Khedhairy, A. A., Musarrat, J., & Ahamed, M. (2013). Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One, 8, e69534.

    Article  CAS  Google Scholar 

  14. Shafagh, M., Rahmani, F., & Delirezh, N. (2015). CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway through reactive oxygen species and P53. Iranian Journal of Basic Medical Sciences, 18, 993–1000.

    PubMed  PubMed Central  Google Scholar 

  15. Chang, Y.-N., Zhang, M., Xia, L., Zhang, J., & Xing, G. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5(12), 2850–2871.

    Article  CAS  PubMed Central  Google Scholar 

  16. Fahmy, B., & Cormier, S. A. (2009). Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology In Vitro, 23(7), 1365–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumari, P., Panda, P. K., Jha, E., Kumari, K., Nisha, K., Mallick, M. A., & Verma, S. K. (2017). Mechanistic insight to ROS and apoptosis regulated cytotoxicity inferred by green synthesized CuO nanoparticles from Calotropis gigantea to embryonic zebrafish. Scientific Reports, 7(1), 16284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kumaran, R. S., Choi, Y. K., Kim, H. J., & Kim, K. J. (2014). Quantitation of oxidative stress gene expression in MCF-7 human cell lines treated with water-dispersible CuO nanoparticles. Applied Biochemistry and Biotechnology, 173(3), 731–740.

    Article  CAS  PubMed  Google Scholar 

  19. Ahamed, M., Akhtar, M. J., Fareed, M., & Kumar, S. (2012). Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. The Journal of Toxicological Sciences, 37, 139–148.

    Article  PubMed  Google Scholar 

  20. Karlsson, H. L., Cronholm, P., Gustafsson, J., & Möller, L. (2008). Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21(9), 1726–1732.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Z., Li, N., Zhao, J., White, J. C., Qu, P., & Xing, B. (2012). CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chemical Research in Toxicology, 25(7), 1512–1521.

    Article  CAS  PubMed  Google Scholar 

  22. Barbasz, A., Oćwieja, M., & Barbasz, J. (2015). Cytotoxic activity of highly purified silver nanoparticles sol against cells of human immune system. Applied Biochemistry and Biotechnology, 176(3), 817–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meena, R., Kajal, K., & Paulraj, R. (2015). Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male Wistar rat. Applied Biochemistry and Biotechnology, 175(2), 825–840.

    Article  CAS  PubMed  Google Scholar 

  24. Xia, D.-L., Wang, Y.-F., Bao, N., He, H., Li, X.-D., Chen, Y.-P., & Gu, H.-Y. (2014). Influence of reducing agents on biosafety and biocompatibility of gold nanoparticles. Applied Biochemistry and Biotechnology, 174(7), 2458–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meena, R., Rani, M., Pal, R., & Rajamani, P. (2012). Nano-TiO2-induced apoptosis by oxidative stress-mediated DNA damage and activation of p53 in human embryonic kidney cells. Applied Biochemistry and Biotechnology, 167(4), 791–808.

    Article  CAS  PubMed  Google Scholar 

  26. Sooklert, K., Chattong, S., Manotham, K., Boonwong, C., Klaharn, I. Y., Jindatip, D., & Sereemaspun, A. (2016). Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure. International Journal of Nanomedicine, 11, 597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, C. L., & Rosi, N. L. (2010). Peptide-based methods for the preparation of nanostructured inorganic materials. Angewandte Chemie, International Edition, 49(11), 1924–1942.

    Article  CAS  Google Scholar 

  28. Seker, U. O., & Demir, H. V. (2011). Material binding peptides for nanotechnology. Molecules, 16(2), 1426–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sarikaya, M., Tamerler, C., Jn, A. K.-Y., Schulten, K., & Baneyx, F. (2003). Molecular biomimetics: nanotechnology through biology. Nature Materials, 2(9), 577–585.

    Article  CAS  PubMed  Google Scholar 

  30. Walsh, T. R., & Knecht, M. R. (2017). Biointerface structural effects on the properties and applications of bioinspired peptide-based nanomaterials. Chemical Reviews, 117(20), 12641–12704.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, W., Anderson, C. F., Wang, Z., Wu, W., Cui, H., & Liu, C.-J. (2017). Peptide-templated noble metal catalysts: syntheses and applications. Chemical Science, 8(5), 3310–3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hatanaka, T., Matsugami, A., Nonaka, T., Takagi, H., Hayashi, F., Tani, T., & Ishida, N. (2017). Rationally designed mineralization for selective recovery of the rare earth elements. Nature Communications, 8(1), 15670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hatanaka, T., Ohashi, M., & Ishida, N. (2018). Ordered silica mineralization by regulating local reaction conditions. Biomaterials Science, 6(9), 2316–2319.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y., Zheng, F., Yang, T., Zhou, W., Liu, Y., Man, N., Zhang, L., Jin, N., Dou, Q., Zhang, Y., Li, Z., & Wen, L. P. (2012). Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nature Materials, 11(9), 817–826.

    Article  CAS  PubMed  Google Scholar 

  35. Thai, C. K., Dai, H., Sastry, M. S. R., Sarikaya, M., Schwartz, D. T., & Baneyx, F. (2004). Identification and characterization of Cu2O- and ZnO-binding polypeptide by Escherichia coli cell surface display: toward an understanding of metal oxide binding. Biotechnology and Bioengineering, 87(2), 129–137.

    Article  CAS  PubMed  Google Scholar 

  36. Carlos, F., Barbas, I. I. I., Burton, D. R., Scott, J. K., & Silverman, G. J. (2001). Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, A1, 1–A1.2.

    Google Scholar 

  37. Hatanaka, T., Ohzono, S., Park, M., Sakamoto, K., Tsukamoto, S., Sugita, R., Ishitobi, H., Mori, T., Ito, O., Sorajo, K., Sugimura, K., Ham, S., & Ito, Y. (2012). Human IgA-binding peptides selected from random peptide libraries: affinity maturation and application in IgA purification. The Journal of Biological Chemistry, 287(51), 43126–43136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seker, U. O. S., Wilson, B., Dincer, S., Kim, I. W., Oren, E. E., Evans, J. S., Tamerler, C., & Sarikaya, M. (2007). Adsorption behavior of linear and cyclic genetically engineered platinum binding peptides. Langmuir, 23(15), 7895–7900.

    Article  CAS  PubMed  Google Scholar 

  39. Azam, A., Ahmed, A. S., Oves, M., Khan, M. and Memic, A. (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7, 3527–3535.

  40. Heinz, H., & Ramezani-Dakhel, H. (2016). Simulations of inorganic-bioorganic interfaces to discover new materials: Insights, comparisons to experiment, challenges, and opportunities. Chemical Society Reviews, 45(2), 412–448.

    Article  CAS  PubMed  Google Scholar 

  41. Bao, S., Lu, Q., Fang, T., Dai, H., Zhang, C., & Brakhage, A. A. (2015). Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted. Applied and Environmental Microbiology, 81(23), 8098–8107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Long, Y.-M., Hu, L.-G., Yan, X.-T., Zhao, X.-C., Zhou, Q.-F., Cai, Y., & Jiang, G.-B. (2017). Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. International Journal of Nanomedicine, 12, 3193–3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shah, P., Kaushik, A., Zhu, X., Zhang, C., & Li, C.-Z. (2014). Chip based single cell analysis for nanotoxicity assessment. Analyst, 139(9), 2088–2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shah, P., Zhu, X., Chen, C., Hu, Y., & Li, C.-Z. (2014). Lab-on-chip device for single cell trapping and analysis. Biomedical Microdevices, 16(1), 35–41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Mayu Kubota and Ritsuko Kitagawa at Toyota CRDL for technical assistance with all data collection. We would like to thank Editage for English language editing. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Ishida.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.44 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, N., Hosokawa, Y., Imaeda, T. et al. Reduction of the Cytotoxicity of Copper (II) Oxide Nanoparticles by Coating with a Surface-Binding Peptide. Appl Biochem Biotechnol 190, 645–659 (2020). https://doi.org/10.1007/s12010-019-03108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03108-9

Keywords

Navigation