Skip to main content

Advertisement

Log in

Apela Promotes Cardiomyocyte Differentiation from Transgenic Human Embryonic Stem Cell Lines

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Although embryonic stem (ES) cells (ESCs) may be a promising donor source for the repair of infarcted or ischemic heart tissues, their successful application in regenerative medicine has been hampered by difficulties in enriching, identifying, and selecting cardiomyocytes from the differentiating cells. We established transgenic human ES cell lines by transcriptional control of the α-cardiac myosin heavy chain (α-MHC) promoter driving green fluorescent protein (GFP) expression. Differentiated GFP-expressing cells display the characteristics of cardiomyocytes (CMs). Apela, a recently identified short peptide, up-regulated the expression of the cardiac-restricted transcription factors Tbx5 and GATA4 as well as differentiated the cardiomyocyte markers α-MHC and β-MHC. Flow cytometric analysis showed that apela increased the percentage of GFP-expressing cells in the beating foci of the embryoid bodies. The percentage of cardiac troponin T (TNT)-positive cells and the protein expression of TNT were increased in the ES cell-derived CMs with apela treatment. Functionally, the contractile frequency of the ES-derived CMs responded appropriately to the vasoactive drugs isoprenaline and carbachol. Our work presented a protocol for specially labelling and enriching CMs by combining transgenic human ES cell lines and exogenous growth factor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Laflamme, M. A., & Murry, C. E. (2005). Regenerating the heart. Nature Biotechnology, 23(7), 845–856.

    Article  CAS  PubMed  Google Scholar 

  2. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science., 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  3. Mazzotta, S., Lynch, A. T., & Hoppler, S. (2018). Cardiomyocyte differentiation from human embryonic stem cells. Methods in Molecular Biology, 1816, 67–78.

    Article  CAS  PubMed  Google Scholar 

  4. Okahara-Narita, J., Umeda, R., Nakamura, S., Mori, T., Noce, T., & Torii, R. (2012). Induction of pluripotent stem cells from fetal and adult cynomolgus monkey fibroblasts using four human transcription factors. Primates., 53(2), 205–213.

    Article  PubMed  Google Scholar 

  5. Zhao, Q., Wang, X., Wang, S., Song, Z., Wang, J., & Ma, J. (2017). Cardiotoxicity evaluation using human embryonic stem cells and induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Research & Therapy, 8(1), 54.

    Article  CAS  Google Scholar 

  6. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell., 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  7. Cherry, A. B., & Daley, G. Q. (2013). Reprogrammed cells for disease modeling and regenerative medicine. Annual Review of Medicine, 64(1), 277–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laflamme, M. A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., Muskheli, V., & Murry, C. E. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. The American Journal of Pathology, 167(3), 663–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., Reinecke, H., Xu, C., Hassanipour, M., Police, S., O'Sullivan, C., Collins, L., Chen, Y., Minami, E., Gill, E. A., Ueno, S., Yuan, C., Gold, J., & Murry, C. E. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  10. van Laake, L. W., Passier, R., Doevendans, P. A., & Mummery, C. L. (2008). Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circulation Research, 102(9), 1008–1010.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, J., Klos, M., Wilson, G. F., Herman, A. M., Lian, X., Raval, K. K., Barron, M. R., Hou, L., Soerens, A. G., Yu, J., Palecek, S. P., Lyons, G. E., Thomson, J. A., Herron, T. J., Jalife, J., & Kamp, T. J. (2012). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circulation Research, 111(9), 1125–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, Y., Linask, K. L., Mallon, B., Johnson, K., Klein, M., Beers, J., Xie, W., Du, Y., Liu, C., Lai, Y., Zou, J., Haigney, M., Yang, H., Rao, M., & Chen, G. (2017). Heparin promotes cardiac differentiation of human pluripotent stem cells in chemically defined albumin-free medium, enabling consistent manufacture of cardiomyocytes. Stem Cells Translational Medicine, 6(2), 527–538.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, L., Soonpaa, M. H., Adler, E. D., Roepke, T. K., Kattman, S. J., Kennedy, M., Henckaerts, E., Bonham, K., Abbott, G. W., Linden, R. M., Field, L. J., & Keller, G. M. (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature., 453(7149), 524–528.

    Article  CAS  PubMed  Google Scholar 

  14. Burridge, P. W., Thompson, S., Millrod, M. A., Weinberg, S., Yuan, X., Peters, A., Mahairaki, V., Koliatsos, V. E., Tung, L., & Zambidis, E. T. (2011). A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One, 6(4), e18293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren, M., Han, Z., Li, J., Feng, G., & Ouyang, S. (2015). Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardiomyocytes. Materials Science & Engineering. C, Materials for Biological Applications, 56, 348–355.

    Article  CAS  Google Scholar 

  16. Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L. B., Azarin, S. M., Raval, K. K., Zhang, J., Kamp, T. J., & Palecek, S. P. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 109(27), e1848–e1857.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Minami, I., Yamada, K., Otsuji, T. G., Yamamoto, T., Shen, Y., Otsuka, S., Kadota, S., Morone, N., Barve, M., Asai, Y., Tenkova-Heuser, T., Heuser, J. E., Uesugi, M., Aiba, K., & Nakatsuji, N. (2012). A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Reports, 2(5), 1448–1460.

    Article  CAS  PubMed  Google Scholar 

  18. Chng, S. C., Ho, L., Tian, J., & Reversade, B. (2013). ELABELA: a hormone essential for heart development signals via the apelin receptor. Developmental Cell, 27(6), 672–680.

    Article  CAS  PubMed  Google Scholar 

  19. Pauli, A., Norris, M. L., Valen, E., Chew, G. L., Gagnon, J. A., Zimmerman, S., Mitchell, A., Ma, J., Dubrulle, J., Reyon, D., Tsai, S. Q., Joung, J. K., Saghatelian, A., & Schier, A. F. (2014). Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science., 343(6172), 1248636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Z., Xu, G., Wu, Y., Liu, S., Sun, B., & Dai, Q. (2008). Neuregulin-1 promotes cardiomyocyte differentiation of genetically engineered embryonic stem cell clones. BMB Reports, 41(10), 699–704.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Z., Yu, D., Wang, M., Wang, Q., Kouznetsova, J., Yang, R., Qian, K., Wu, W., Shuldiner, A., Sztalryd, C., Zou, M., Zheng, W., & Gong, D. W. (2015). Elabela-apelin receptor signaling pathway is functional in mammalian systems. Scientific Reports, 5(1), 8170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Di Pasquale, E., Song, B., & Condorelli, G. (2013). Generation of human cardiomyocytes: a differentiation protocol from feeder-free human induced pluripotent stem cells. Journal of Visualized Experiments, 28(76).

  23. Wang, Z., & Huang, J. (2014). Neuregulin-1 increases connexin-40 and connexin-45 expression in embryonic stem cell-derived cardiomyocytes. Applied Biochemistry and Biotechnology, 174(2), 483–493.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, P., Li, J., Tan, Z., Wang, C., Liu, T., Chen, L., Yong, J., Jiang, W., Sun, X., Du, L., Ding, M., & Deng, H. (2008). Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood., 111(4), 1933–1941.

    Article  CAS  PubMed  Google Scholar 

  25. Watabe, T., & Miyazono, K. (2009). Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Research, 19(1), 103–115.

    Article  CAS  PubMed  Google Scholar 

  26. Nostro, M. C., Cheng, X., Keller, G. M., & Gadue, P. (2008). Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell, 2(1), 60–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Willems, E., & Leyns, L. (2008). Patterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires fibroblast growth factor activity. Differentiation., 76(7), 745–759.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, I. N., Wang, X., Ge, X., Anderson, J., Ho, M., Ashley, E., Liu, J., Butte, M. J., Yazawa, M., Dolmetsch, R. E., Quertermous, T., & Yang, P. C. (2012). Apelin enhances directed cardiac differentiation of mouse and human embryonic stem cells. PLoS One, 7(6), e38328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parikh, A., Wu, J., Blanton, R. M., & Tzanakakis, E. S. (2015). Signaling pathways and gene regulatory networks in cardiomyocyte differentiation. Tissue Engineering. Part B, Reviews, 21(4), 377–392.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Duelen, R., Gilbert, G., Patel, A., de Schaetzen, N., De Waele, L., Roderick, L., Sipido, K. R., Verfaillie, C. M., Buyse, G. M., Thorrez, L., & Sampaolesi, M. (2017). Activin A modulates CRIPTO-1/HNF4α+ cells to guide cardiac differentiation from human embryonic stem cells. Stem Cells International, 2017, 4651238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kehat, I., Gepstein, A., Spira, A., Itskovitz-Eldor, J., & Gepstein, L. (2002). High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circulation Research, 91(8), 659–661.

    Article  CAS  PubMed  Google Scholar 

  32. Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-Eldor, J., & Gepstein, L. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22(10), 1282–1289.

    Article  CAS  PubMed  Google Scholar 

  33. Huber, I., Itzhaki, I., Caspi, O., Arbel, G., Tzukerman, M., Gepstein, A., Habib, M., Yankelson, L., Kehat, I., & Gepstein, L. (2007). Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. The FASEB Journal, 21(10), 2551–2563.

    Article  CAS  PubMed  Google Scholar 

  34. Bizy, A., Guerrero-Serna, G., Hu, B., Ponce-Balbuena, D., Willis, B. C., Zarzoso, M., Ramirez, R. J., Sener, M. F., Mundada, L. V., Klos, M., Devaney, E. J., Vikstrom, K. L., Herron, T. J., & Jalife, J. (2013). Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Research, 11(3), 1335–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veevers, J., Farah, E. N., Corselli, M., Witty, A. D., Palomares, K., Vidal, J. G., Emre, N., Carson, C. T., Ouyang, K., Liu, C., van Vliet, P., Zhu, M., Hegarty, J. M., Deacon, D. C., Grinstein, J. D., Dirschinger, R. J., Frazer, K. A., Adler, E. D., Knowlton, K. U., Chi, N. C., Martin, J. C., Chen, J., & Evans, S. M. (2018). Cell-surface marker signature for enrichment of ventricular cardiomyocytes derived from human embryonic stem cells. Stem Cell Reports, 11(3), 828–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, Y., Park, P., Hong, S. M., & Ban, K. (2018). Maturation of cardiomyocytes derived from human pluripotent stem cells: current strategies and limitations. Molecules and Cells, 41(7), 613–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tuteja, N. (2009). Signaling through G protein coupled receptors. Plant Signaling & Behavior, 4(10), 942–947.

    Article  CAS  Google Scholar 

  38. Liebmann, C., & Böhmer, F. D. (2000). Signal transduction pathways of G protein-coupled receptors and their cross-talk with receptor tyrosine kinases: lessons from bradykinin signaling. Current Medicinal Chemistry, 7(9), 911–943.

    Article  CAS  PubMed  Google Scholar 

  39. Gudermann, T. (2001). Multiple pathways of ERK activation by G protein-coupled receptors. Novartis Foundation Symposium, 239, 68–79.

    CAS  PubMed  Google Scholar 

  40. Blaukat, A., Barac, A., Cross, M. J., Offermanns, S., & Dikic, I. (2000). G protein-coupled receptor-mediated mitogen-activated protein kinase activation through cooperation of Galpha(q) and Galpha(i) signals. Molecular and Cellular Biology, 20(18), 6837–6848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cox, C. M., D'Agostino, S. L., Miller, M. K., Heimark, R. L., & Krieg, P. A. (2006). Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Developmental Biology, 296(1), 177–189.

    Article  CAS  PubMed  Google Scholar 

  42. Tucker, B., Hepperle, C., Kortschak, D., Rainbird, B., Wells, S., Oates, A. C., & Lardelli, M. (2007). Zebrafish Angiotensin II Receptor-like 1a (agtrl1a) is expressed in migrating hypoblast, vasculature, and in multiple embryonic epithelia. Gene Expression Patterns, 7(3), 258–265.

    Article  CAS  PubMed  Google Scholar 

  43. Kidoya, H., Ueno, M., Yamada, Y., Mochizuki, N., Nakata, M., Yano, T., Fujii, R., & Takakura, N. (2008). Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. The EMBO Journal, 27(3), 522–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kälin, R. E., Kretz, M. P., Meyer, A. M., Kispert, A., Heppner, F. L., & Brändli, A. W. (2007). Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Developmental Biology, 305(2), 599–614.

    Article  CAS  PubMed  Google Scholar 

  45. Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Hayashi, K., Sato, H., Nagai, K., Kimura, K., Makita, H., Sekine, M., Obayashi, M., Nishi, T., Shibahara, T., Tanaka, T., Ishii, S., Yamamoto, J., Saito, K., Kawai, Y., Isono, Y., Nakamura, Y., Nagahari, K., Murakami, K., Yasuda, T., Iwayanagi, T., Wagatsuma, M., Shiratori, A., Sudo, H., Hosoiri, T., Kaku, Y., Kodaira, H., Kondo, H., Sugawara, M., Takahashi, M., Kanda, K., Yokoi, T., Furuya, T., Kikkawa, E., Omura, Y., Abe, K., Kamihara, K., Katsuta, N., Sato, K., Tanikawa, M., Yamazaki, M., Ninomiya, K., Ishibashi, T., Yamashita, H., Murakawa, K., Fujimori, K., Tanai, H., Kimata, M., Watanabe, M., Hiraoka, S., Chiba, Y., Ishida, S., Ono, Y., Takiguchi, S., Watanabe, S., Yosida, M., Hotuta, T., Kusano, J., Kanehori, K., Takahashi-Fujii, A., Hara, H., Tanase, T. O., Nomura, Y., Togiya, S., Komai, F., Hara, R., Takeuchi, K., Arita, M., Imose, N., Musashino, K., Yuuki, H., Oshima, A., Sasaki, N., Aotsuka, S., Yoshikawa, Y., Matsunawa, H., Ichihara, T., Shiohata, N., Sano, S., Moriya, S., Momiyama, H., Satoh, N., Takami, S., Terashima, Y., Suzuki, O., Nakagawa, S., Senoh, A., Mizoguchi, H., Goto, Y., Shimizu, F., Wakebe, H., Hishigaki, H., Watanabe, T., Sugiyama, A., Takemoto, M., Kawakami, B., Yamazaki, M., Watanabe, K., Kumagai, A., Itakura, S., Fukuzumi, Y., Fujimori, Y., Komiyama, M., Tashiro, H., Tanigami, A., Fujiwara, T., Ono, T., Yamada, K., Fujii, Y., Ozaki, K., Hirao, M., Ohmori, Y., Kawabata, A., Hikiji, T., Kobatake, N., Inagaki, H., Ikema, Y., Okamoto, S., Okitani, R., Kawakami, T., Noguchi, S., Itoh, T., Shigeta, K., Senba, T., Matsumura, K., Nakajima, Y., Mizuno, T., Morinaga, M., Sasaki, M., Togashi, T., Oyama, M., Hata, H., Watanabe, M., Komatsu, T., Mizushima-Sugano, J., Satoh, T., Shirai, Y., Takahashi, Y., Nakagawa, K., Okumura, K., Nagase, T., Nomura, N., Kikuchi, H., Masuho, Y., Yamashita, R., Nakai, K., Yada, T., Nakamura, Y., Ohara, O., Isogai, T., & Sugano, S. (2004). Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genetics, 36(1), 40–45.

    Article  PubMed  Google Scholar 

  46. Hassan, A. S., Hou, J., Wei, W., & Hoodless, P. A. (2010). Expression of two novel transcripts in the mouse definitive endoderm. Gene Expression Patterns, 10(2–3), 127–134.

    Article  CAS  PubMed  Google Scholar 

  47. Kawamata, Y., Habata, Y., Fukusumi, S., Hosoya, M., Fujii, R., Hinuma, S., Nishizawa, N., Kitada, C., Onda, H., Nishimura, O., & Fujino, M. (2001). Molecular properties of apelin: tissue distribution and receptor binding. Biochimica et Biophysica Acta, 1538(2–3), 162–171.

    Article  CAS  PubMed  Google Scholar 

  48. Sánchez, A., Jones, W. K., Gulick, J., Doetschman, T., & Robbins, J. (1991). Myosin heavy chain gene expression in mouse embryoid bodies. An in vitro developmental study. The Journal of Biological Chemistry, 266(33), 22419–22426.

    PubMed  Google Scholar 

  49. Ng, W. A., Grupp, I. L., Subramaniam, A., & Robbins, J. (1991). Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circulation Research, 68(6), 1742–1750.

    Article  CAS  PubMed  Google Scholar 

  50. Westfall, M. V., Samuelson, L. C., & Metzger, J. M. (1996). Troponin I isoform expression is developmentally regulated in differentiating embryonic stem cell derived cardiac myocytes. Developmental Dynamics, 206(1), 24–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Award No. 81570365). We thank Dawei Gong, Rongze Yang, and Daozhan Yu from the University of Maryland School of Medicine for their valuable help in experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Wang or Jin Huang.

Ethics declarations

Conflict of Interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Huang, J. Apela Promotes Cardiomyocyte Differentiation from Transgenic Human Embryonic Stem Cell Lines. Appl Biochem Biotechnol 189, 396–410 (2019). https://doi.org/10.1007/s12010-019-03012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03012-2

Keywords

Navigation