Skip to main content
Log in

Pyrrolizidine Alkaloids-Free Extract from the Cell Culture of Lithospermum officinale with High Antioxidant Capacity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The benefits of Lithospermum officinale has encouraged people to continue using its extract (CAS 90063-58-4) in both medicinal and cosmetic industries despite the fact that chemical analysis confirms the presence of pyrrolizidine alkaloids (PAs) in the extract. While the cultivation of L. officinale takes, at least, 2 years to produce usable crops, its callus culture proliferated 8.3 times with 4.9-fold biomass in less than 30 days under the applied conditions in this study. Under the applied conditions, the cell extract contained no toxic PAs while phenylpropanoid pathway was active toward phenolic acids formation not toward naphthoquinone derivatives. Rosmarinic acid was produced as the main constituent. Total phenolic content and antioxidant capacity of the proliferated cell extracts were similar to those of the extracts of the natural plant tissues, in particular from the root. These results support the idea that the extract of L. officinale cells can be a reliable substitute for the extract of the natural plant tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed, S., Hasan, M. M., & Mahmood, Z. A. (2016). Antiurolithiatic plants: multidimensional pharmacology. Journal of Pharmacognosy and Phytochemistry, 5, 4–24.

    Google Scholar 

  2. Amiri, Z. M., Tanideh, N., Seddighi, A., Mokhtari, M., Amini, M., Partovi, A. S., Manafi, A., Hashemi, S. S., & Mehrabani, D. (2017). The effect of Lithospermum officinale, silver sulfadiazine and alpha ointments in healing of burn wound injuries in rat. World Journal of Plastic Surgery, 6, 313–318.

    Google Scholar 

  3. Dresler, S., Szymczak, G., & Wójcik, M. (2017). Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharmaceutical Biology, 55(1), 691–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Solcan, L., M. Danu, I. Irimia & G. Bodi (2014). Use and possible significance of two species of boraginaceae family in prehistory—a review of the cucuteni culture finds. Analele Stiintifice ale Universitatii “ Al. I. Cuza” din Iasi, 60, 63.

  5. Winterhoff, H. (1993). Lithospermum species. In P. A. G. M. De Smet, K. Keller, R. Hänsel, R.F. Chandler (Eds.), Adverse effects of herbal drugs, vol. 2 (pp. 241–244). Berlin, Heidelberg: Springer-Verlag.

  6. Yarnell, E., & Abascal, K. (2006). Botanical medicine for thyroid regulation. Alternative & Complementary Therapies, 12(3), 107–112.

    Article  Google Scholar 

  7. El-Shazly, A., & Wink, M. (2014). Diversity of pyrrolizidine alkaloids in the Boraginaceae structures, distribution, and biological properties. Diversity, 6(2), 188–282.

    Article  CAS  Google Scholar 

  8. Wiedenfeld, H. (2011). Plants containing pyrrolizidine alkaloids: toxicity and problems. Food Additives & Contaminants: Part A, 28(3), 282–292.

    Article  CAS  Google Scholar 

  9. Medina, A. A., & Prina, A. O. Lithospermum officinale, nuevo registro de Boraginaceae para Argentina Lithospermum officinale, a new record in Boraginaceae for Argentina. Boletín de la Sociedad Argentina de Botánica, 48, 331–333.

  10. Haghbeen, K., Mozaffarian, V., Ghaffari, F., Pourazeezi, E., Saraji, M., & Joupari, M. (2006). Lithospermum officinale callus produces shikalkin. Biologia, 61, 463–467.

    Article  CAS  Google Scholar 

  11. Mattocks, A. R. (1967). Spectrophotometric determination of unsaturated pyrrolizidine alkaloids. Analytical Chemistry, 39(4), 443–447.

    Article  CAS  PubMed  Google Scholar 

  12. Mattocks, A. R., & Jukes, R. (1987). Improved field tests for toxic pyrrolizidine alkaloids. Journal of Natural Products, 50(2), 161–166.

    Article  CAS  PubMed  Google Scholar 

  13. Singleton, V. L., R. Orthofer and R. M. Lamuela-Raventós (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, vol.299: Oxidants and Antioxidants Part A, Edited by Lester Packer. Elsevier, pp.152–178.

  14. Arnao, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73(2), 239–244.

    Article  CAS  Google Scholar 

  15. Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28, 25–30.

    Article  CAS  Google Scholar 

  16. Bauer, N., Leljak-Levanic, D., & Jelaska, S. (2004). Rosmarinic acid synthesis in transformed callus culture of Coleus blumei Benth. Zeitschrift für Naturforschung C, 59, 554–560.

    Article  CAS  Google Scholar 

  17. Hakkim, F., Kalyani, S., Essa, M., Girija, S., & Song, H. (2011). Production of rosmarinic acid in Ocimum sanctum (L.) cell suspension cultures by the influence of growth regulators. International Journal of Biological and Medical Research, 2, 1158–1161.

    Google Scholar 

  18. Andrushchenko, O. (2017, November 24). Perspectives of Lithospermum officinale L. cultivation. Agrobiodiversity for improving nutrition, health and life quality, (1). Retrieved from https://agrobiodiversity.uniag.sk/scientificpapers/article/view/25. Accessed 24 July 2018.

  19. Häkkinen, S. T., Moyano, E., Cusido, R. M., Palazon, J., Pinol, M. T., & Oksman-Caldentey, K.-M. (2005). Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6β-hydroxylase. Journal of Experimental Botany, 56(420), 2611–2618.

    Article  PubMed  Google Scholar 

  20. Thoden, T. C., & Boppré, M. (2010). Plants producing pyrrolizidine alkaloids: sustainable tools for nematode management. Nematology, 12(1), 1–24.

    Article  CAS  Google Scholar 

  21. Irmer, S., Podzun, N., Langel, D., Heidemann, F., Kaltenegger, E., Schemmerling, B., Geilfus, C.-M., Zörb, C., & Ober, D. (2015). New aspect of plant–rhizobia interaction: alkaloid biosynthesis in Crotalaria depends on nodulation. Proceedings of the National Academy of Sciences, 112(13), 4164–4169.

    Article  CAS  Google Scholar 

  22. Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hücherig, S., Janiak, V., Kim, K. H., Sander, M., & Weitzel, C. (2009). Evolution of rosmarinic acid biosynthesis. Phytochemistry, 70(15-16), 1663–1679.

    Article  CAS  PubMed  Google Scholar 

  23. Arghavani, P., Haghbeen, K., & Mousavi, A. (2015). Enhancement of shikalkin production in Arnebia euchroma callus by a fungal elicitor, Rhizoctonia solani. Iranian Journal of Biotechnology, 13(4), 10–16.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoğlu, B., Berker, K. I., & Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dimitrios, B. (2006). Sources of natural phenolic antioxidants. Trends in Food Science & Technology, 17(9), 505–512.

    Article  CAS  Google Scholar 

  26. Prior, R. L., Cao, G., Martin, A., Sofic, E., McEwen, J., O'Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., & Krewer, G. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry, 46(7), 2686–2693.

    Article  CAS  Google Scholar 

  27. Katalinic, V., Milos, M., Kulisic, T., & Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry, 94(4), 550–557.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Collaboration of Prof. Ghasempour for completing the Mass analysis is sincerely acknowledged.

Funding

The work was supported through annual research grants of Dr. A. Mousavi and Prof. K. Haghbeen (NIGEB Project No. 642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamahldin Haghbeen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, E., Mousavi, A., Farhadpour, M. et al. Pyrrolizidine Alkaloids-Free Extract from the Cell Culture of Lithospermum officinale with High Antioxidant Capacity. Appl Biochem Biotechnol 187, 744–752 (2019). https://doi.org/10.1007/s12010-018-2830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2830-3

Keywords

Navigation