Skip to main content

Advertisement

Log in

Evaluation and Optimization of Organic Acid Pretreatment of Cotton Gin Waste for Enzymatic Hydrolysis and Bioethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This paper investigates the efficiency of the organic acids on the pretreatment of an industrially generated cotton gin waste for the removal of lignin, thereby releasing cellulose and hemicellulose as fermentable sugar components. Cotton gin waste was pretreated with various organic acids namely lactic acid, oxalic acid, citric acid, and maleic acid. Among these, maleic acid was found to be the most efficient producing maximum xylose sugar (126.05 ± 0.74 g/g) at the optimum pretreatment condition of 150 °C, 500 mM, and 45 min. The pretreatment efficiency was comparable to the conventional dilute sulfuric acid pretreatment. A lignin removal of 88% was achieved by treating maleic acid pretreated biomass in a mixture of sodium sulfite and sodium chlorite. The pretreated biomass was further evaluated for the release of sugar by enzymatic hydrolysis and subsequently bioethanol production from hydrolysates. The maximum 686.13 g/g saccharification yield was achieved with maleic acid pretreated biomass which was slightly higher than the sulfuric acid (675.26 g/g) pretreated waste. The fermentation of mixed hydrolysates(41.75 g/l) produced 18.74 g/l bioethanol concentration with 2.25 g/l/h ethanol productivity and 0.48 g/g ethanol yield using sequential use of Saccharomyces cerevisiae and Pichia stipitis yeast strains. The production of bioethanol was higher than the ethanol produced using co-culture in comparison to sequential culture. Thus, it has been demonstrated that the maleic acid pretreatment and fermentation using sequential use of yeast strains are efficient for bioethanol production from cotton gin waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Plácido, J., & Capareda, S. (2014). Analysis of alkali ultrasonication pretreatment in bioethanol production from cotton gin trash using FT-IR spectroscopy and principal component analysis. Bioresources and Bioprocessing, 1, 23.

    Article  Google Scholar 

  2. Sahu, S., & Pramanik, K. (2015a). Bioconversion of cotton gin waste to bioethanol. Environmental Microbial Biotechnology, 45, 267–288 Springer International Publishing, Switzerland.

    Article  CAS  Google Scholar 

  3. Sahu, S., & Pramanik, K. (2015b). Delignification of cotton gin waste and its optimization by using white rot fungus Pycnoporus cinnabarinus. Journal of Environmental Biology, 36, 661–667.

    CAS  Google Scholar 

  4. Kim, S. B., Lee, J. H., Oh, K. K., Lee, S. J., Lee, J. Y., Kim, J. S., & Kim, S. W. (2011). Dilute acid pretreatment of barley straw and its saccharification and fermentation. Biotechnology and Bioprocess Engineering, 16(4), 725–732.

    Article  CAS  Google Scholar 

  5. Kumari, R., & Pramanik, K. (2013). Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain. Applied Biochemistry and Biotechnology, 171(3), 771–785.

    Article  CAS  Google Scholar 

  6. Qin, L., Liu, Z. H., Li, B. Z., Dale, B. E., & Yuan, Y. J. (2012). Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresource Technology, 112, 319–326.

    Article  CAS  Google Scholar 

  7. Kootstra, A. M. J., Beeftink, H. H., Scott, E. L., & Sanders, J. P. (2009). Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, 46(2), 126–131.

    Article  CAS  Google Scholar 

  8. Chandel, A. K., Singh, O. V., Chandrasekhar, G., Rao, L. V., & Narasu, M. L. (2011). Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. Bioresource Technology, 102(2), 1709–1714.

    Article  CAS  Google Scholar 

  9. Scordia, D., Cosentino, S. L., Lee, J. W., & Jeffries, T. W. (2011). Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass and Bioenergy, 35(7), 3018–3024.

    Article  CAS  Google Scholar 

  10. Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1), 7.

    Article  Google Scholar 

  11. Idrees, M., Adnan, A., Sheikh, S., & Qureshic, F. A. (2013). Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production. EXCLI Journal, 12, 30–40.

    PubMed  PubMed Central  Google Scholar 

  12. Kuhad, R. C., Gupta, R., Khasa, Y. P., & Singh, A. (2010). Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresource Technology, 101(21), 8348–8354.

    Article  CAS  Google Scholar 

  13. Marques, S., Alves, L., Roseiro, J. C., & Gírio, F. M. (2008). Bioethanol production from Lantana camara (red sage): pretreatment saccharification and fermentation. Biomass and Bioenergy, 32(5), 400–406.

    Article  CAS  Google Scholar 

  14. Li, Y., Park, J. Y., Shiroma, R., & Tokuyasu, K. (2011). Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Journal of Bioscience and Bioengineering, 111(6), 682–686.

    Article  CAS  Google Scholar 

  15. Yadav, K. S., Naseeruddin, S., Prashanthi, G. S., Sateesh, L., & Rao, L. V. (2011). Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresource Technology, 102(11), 6473–6478.

    Article  Google Scholar 

  16. TAPPI (1992). Technical association of pulp and paper industry Atlanta, Georgia, USA.

  17. Chum, H. L., Johnson, D. K., Black, S. K., & Overend, R. P. (1990). Pretreatment-catalyst effects and the combined severity parameter. Applied Biochemistry and Biotechnology, 24, 1–14.

    Article  Google Scholar 

  18. Chen, Y., Stevens, M. A., Zhu, Y., Holmes, J., & Xu, H. (2013). Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for Biofuels, 6, 8.

    Article  CAS  Google Scholar 

  19. Norwitz, G., & Keliher, P. N. (1982). Spectrophotometric determination of phenol by the 4-aminoantipyrine method after steam distillation in a semimicro Kjeldahl apparatus in the presence of a large amount of sodium chloride. Analytica Chimica Acta, 144, 273–276.

    Article  CAS  Google Scholar 

  20. Khabarov, Y. G., Kamakina, N. D., Gusakov, L. V., & Veshnyakov, V. (2006). A new spectrophotometric method for determination of furfural and pentoses. Russian Journal of Applied Chemistry, 79(1), 103–106.

    Article  CAS  Google Scholar 

  21. Ma, L., Zhang, J., Zou, G., Wang, C., & Zhou, Z. (2011). Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme and Microbial Technology, 49(4), 366–371.

    Article  CAS  Google Scholar 

  22. Badiei, M., Asim, N., Jahim, J. M., & Sopian, K. (2014). Comparison of chemical pretreatment methods for cellulosic biomass. APCBEE Procedia, 9, 170–174.

    Article  CAS  Google Scholar 

  23. Liu, Z. L. (2006). Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Applied Microbiology and Biotechnology, 73(1), 27–36.

    Article  CAS  Google Scholar 

  24. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Liden, G. (2000). Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 53(6), 701–708.

    Article  CAS  Google Scholar 

  25. Liu, Z. (2006). Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Applied Microbiology and Biotechnology, 73(1), 27–36.

    Article  CAS  Google Scholar 

  26. Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Haegerdal, B. (1999). Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering, 63(1), 46–55.

    Article  CAS  Google Scholar 

  27. Sun, X. F., Xu, F., Sun, R. C., Fowler, P., & Baird, M. S. (2005). Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 340(1), 97–106.

    Article  CAS  Google Scholar 

  28. McIntosh, S., Vancov, T., Palmer, J., & Morris, S. (2014). Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes. Bioresource Technology, 173, 42–51.

    Article  CAS  Google Scholar 

  29. Kumari, R., & Pramanik, K. (2012). Improved bioethanol production using fusants of saccharomyces cerevisiae and xylose-fermenting yeasts. Applied Biochemistry and Biotechnology, 167(4), 873–884.

    Article  CAS  Google Scholar 

  30. Placido, J., Imam, T., & Capareda, S. (2013). Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash. Bioresource Technology, 139, 203–208.

    Article  CAS  Google Scholar 

  31. Jeoh, T., & Agblevor, F. A. (2001). Characterization and fermentation of steam exploded cotton gin waste. Biomass and Bioenergy., 21(2), 109–120.

    Article  CAS  Google Scholar 

Download references

Funding

The study received financial support from the Ministry of Environment and Forest, Government of India, section no (19/14/27-RE) to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Pramanik.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Pramanik, K. Evaluation and Optimization of Organic Acid Pretreatment of Cotton Gin Waste for Enzymatic Hydrolysis and Bioethanol Production. Appl Biochem Biotechnol 186, 1047–1060 (2018). https://doi.org/10.1007/s12010-018-2790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2790-7

Keywords

Navigation