Skip to main content
Log in

Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work describes the use of an ultrasound system for the enzymatic transesterification of oils using combi-lipases as biocatalyst. The reactions were carried out evaluating the individual use of waste oil and fresh soybean oil, and the immobilized lipases CALB, TLL, and RML were used as biocatalysts. It was performed in a mixture design of three factors to obtain the ideal mixture of lipases according to the composition of fatty acids present in each oil, and the main reaction variables were optimized. After 18 h of reaction, ultrasound provided a biodiesel yield of about 90% when using soybean oil and 70% using the waste oil. The results showed that ultrasound technology, in combination with the application of enzyme mixtures, known as combi-lipases, and the use of waste oil, could be a promising route to reduce the overall process costs of enzymatic production of biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kapoor, M., & Gupta, M. N. (2012). Lipase promiscuity and its biochemical applications. Process Biochemistry, 47(4), 555–569.

    Article  CAS  Google Scholar 

  2. Zhao, X., Qi, F., Yuan, C., Du, W., & Liu, D. (2015). Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renewable & Sustainable Energy Reviews, 44, 182–197.

    Article  CAS  Google Scholar 

  3. Anderson, E. M., Larsson, K. M., & Kirk, O. (1998). One biocatalyst–many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatalysis and Biotransformation, 16(3), 181–204.

    Article  CAS  Google Scholar 

  4. Fernandez-Lafuente, R. (2010). Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 62(3-4), 197–212.

    Article  CAS  Google Scholar 

  5. Rodrigues, R. C., & Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. Journal of Molecular Catalysis B: Enzymatic, 64(1-2), 1–22.

    Article  CAS  Google Scholar 

  6. Rodrigues, R. C., & Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. Journal of Molecular Catalysis B: Enzymatic, 66(1-2), 15–32.

    Article  CAS  Google Scholar 

  7. Tiosso, P. C., Carvalho, A. K. F., de Castro, H. F., de Moraes, F. F., & Zanin, G. M. (2014). Utilization of immobilized lipases as catalysts in the transesterification of non-edible vegetable oils with ethanol. Brazilian Journal of Chemical Engineering, 31(4), 839–847.

    Article  Google Scholar 

  8. Alves, J. S., Vieira, N. S., Cunha, A. S., Silva, A. M., Zachia Ayub, M. A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2014). Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. RSC Advances, 4(14), 6863–6868.

    Article  CAS  Google Scholar 

  9. Poppe, J. K., Matte, C. R., do Carmo Ruaro Peralba, M., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. Z. (2015a). Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases. Applied Catalysis A: General, 490, 50–56.

    Article  CAS  Google Scholar 

  10. Bergmann, J. C., Tupinambá, D. D., Costa, O. Y. A., Almeida, J. R. M., Barreto, C. C., & Quirino, B. F. (2013). Biodiesel production in Brazil and alternative biomass feedstocks. Renewable & Sustainable Energy Reviews, 21, 411–420.

    Article  Google Scholar 

  11. Geris, R., dos Santos, N. A. C., Amaral, B. A., de S. Maia, I., Castro, V. D., & Carvalho, J. R. M. (2007). Biodiesel de soja: reação de transesterificação para aulas práticas de química orgânica. Quimica Nova, 30(5), 1369–1373.

    Article  CAS  Google Scholar 

  12. Poppe, J. K., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. Z. (2015b). Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnology Advances, 33(5), 511–525.

    Article  CAS  Google Scholar 

  13. Trentin, C. M., Popiolki, A. S., Batistella, L., Rosa, C. D., Treichel, H., de Oliveira, D., & Oliveira, J. V. (2015). Enzyme-catalyzed production of biodiesel by ultrasound-assisted ethanolysis of soybean oil in solvent-free system. Bioprocess and Biosystems Engineering, 38(3), 437–448.

    Article  CAS  Google Scholar 

  14. Yu, D., Tian, L., Wu, H., Wang, S., Wang, Y., Ma, D., & Fang, X. (2010). Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochemistry, 45(4), 519–525.

    Article  CAS  Google Scholar 

  15. Mostafaei, M., Ghobadian, B., Barzegar, M., & Banakar, A. (2015). Optimization of ultrasonic assisted continuous production of biodiesel using response surface methodology. Ultrasonics Sonochemistry, 27, 54–61.

    Article  CAS  Google Scholar 

  16. Ho, W. W. S., Ng, H. K., & Gan, S. (2016). Advances in ultrasound-assisted transesterification for biodiesel production. Applied Thermal Engineering, 100, 553–563.

    Article  CAS  Google Scholar 

  17. Lenardão, E. J., Freitag, R. A., Dabdoub, M. J., Batista, A. C. F., & Silveira, C. d. C. (2003). “Green chemistry”: os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Quimica Nova, 26(1), 123–129.

    Article  Google Scholar 

  18. Alves, J., Garcia-Galan, C., Schein, M., Silva, A., Barbosa, O., Ayub, M., Fernandez-Lafuente, R., & Rodrigues, R. (2014). Combined effects of ultrasound and immobilization protocol on butyl acetate synthesis catalyzed by CALB. Molecules, 19(7), 9562–9576.

    Article  Google Scholar 

  19. Martins, A. B., Schein, M. F., Friedrich, J. L. R., Fernandez-Lafuente, R., Ayub, M. A. Z., & Rodrigues, R. C. (2013). Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: enhanced activity and operational stability. Ultrasonics Sonochemistry, 20(5), 1155–1160.

    Article  CAS  Google Scholar 

  20. AOCS (1998). Official methods and recommended practices of the American Oil Chemists Society 1–2, Champaign.

  21. EN, 14103 (2001). Fat and oil derivatives - fatty acid methyl esters (FAME) - determination of esters and linolenic acid methyl esters content. European Committee for Standardization.

  22. Su, F., Li, G.-L., Fan, Y.-L., & Yan, Y.-J. (2015). Enhancing biodiesel production via a synergic effect between immobilized Rhizopus oryzae lipase and Novozym 435. Fuel Processing Technology, 137, 298–304.

    Article  CAS  Google Scholar 

  23. Lee, J. H., Kim, S. B., Kang, S. W., Song, Y. S., Park, C., Han, S. O., & Kim, S. W. (2011). Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresource Technology, 102(2), 2105–2108.

    Article  CAS  Google Scholar 

  24. Pleiss, J., Fischer, M., & Schmid, R. D. (1998). Anatomy of lipase binding sites: the scissile fatty acid binding site. Chemistry and Physics of Lipids, 93(1-2), 67–80.

    Article  CAS  Google Scholar 

  25. Derewenda, Z. S., Derewenda, U., & Dodson, G. G. (1992). The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. Journal of Molecular Biology, 227(3), 818–839.

    Article  CAS  Google Scholar 

  26. Naik, S., Basu, A., Saikia, R., Madan, B., Paul, P., Chaterjee, R., Brask, J., & Svendsen, A. (2010). Lipases for use in industrial biocatalysis: specificity of selected structural groups of lipases. Journal of Molecular Catalysis B: Enzymatic, 65(1-4), 18–23.

    Article  CAS  Google Scholar 

  27. Jachmanián, I., Schulte, E., & Mukherjee, K. D. (1996). Substrate selectivity in esterification of less common fatty acids catalysed by lipases from different sources. Applied Microbiology and Biotechnology, 44(5), 563–567.

    Article  Google Scholar 

  28. Noureddini, H., Gao, X., & Philkana, R. S. (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology, 96(7), 769–777.

    Article  CAS  Google Scholar 

  29. Eguchi, S., Kagawa, S., & Okamoto, S. (2015). Environmental and economic performance of a biodiesel plant using waste cooking oil. Journal of Cleaner Production, 101, 245–250.

    Article  CAS  Google Scholar 

  30. Banković-Ilić, I. B., Stojković, I. J., Stamenković, O. S., Veljkovic, V. B., & Hung, Y.-T. (2014). Waste animal fats as feedstocks for biodiesel production. Renewable & Sustainable Energy Reviews, 32, 238–254.

    Article  Google Scholar 

  31. Hama, S., & Kondo, A. (2013). Enzymatic biodiesel production: an overview of potential feedstocks and process development. Bioresource Technology, 135, 386–395.

    Article  CAS  Google Scholar 

  32. Deba, A. A., Tijani, H. I., Galadima, A. I., Mienda, B. S., Deba, F., & Zargoun, L. M. (2014). Waste cooking oil: a resourceful waste for lipase catalysed biodiesel production. International Journal of Scientific and Research Publications, 4, 1–12.

    Google Scholar 

  33. Yu, C.-Y., Huang, L.-Y., Kuan, I. C., & Lee, S.-L. (2013). Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. International Journal of Molecular Sciences, 14(12), 24074–24086.

    Article  Google Scholar 

  34. Maddikeri, G. L., Pandit, A. B., & Gogate, P. R. (2013). Ultrasound assisted interesterification of waste cooking oil and methyl acetate for biodiesel and triacetin production. Fuel Processing Technology, 116, 241–249.

    Article  CAS  Google Scholar 

  35. Subhedar, P. B., & Gogate, P. R. (2016). Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrasonics Sonochemistry, 29, 67–75.

    Article  CAS  Google Scholar 

  36. Liu, Y., Jin, Q., Shan, L., Liu, Y., Shen, W., & Wang, X. (2008). The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrasonics Sonochemistry, 15(4), 402–407.

    Article  CAS  Google Scholar 

  37. Kojima, Y., Imazu, H., & Nishida, K. (2014). Physical and chemical characteristics of ultrasonically-prepared water-in-diesel fuel: effects of ultrasonic horn position and water content. Ultrasonics Sonochemistry, 21(2), 722–728.

    Article  CAS  Google Scholar 

  38. Batistella, L., Lerin, L. A., Brugnerotto, P., Danielli, A. J., Trentin, C. M., Popiolski, A., Treichel, H., Oliveira, J. V., & de Oliveira, D. (2012). Ultrasound-assisted lipase-catalyzed transesterification of soybean oil in organic solvent system. Ultrasonics Sonochemistry, 19(3), 452–458.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Ramiro Martinez (Novozymes, Spain S.A.) for kindly supplying the enzymes used in this research.

Funding

This work was supported by grants from the Brazilian Coordenação de Aperfoiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antônio Záchia Ayub.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poppe, J.K., Matte, C.R., Fernandez-Lafuente, R. et al. Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions. Appl Biochem Biotechnol 186, 576–589 (2018). https://doi.org/10.1007/s12010-018-2763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2763-x

Keywords

Navigation