Skip to main content
Log in

Arcopilus aureus, a Resveratrol-Producing Endophyte from Vitis vinifera

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Resveratrol is extensively being used as a therapeutic moiety, as well as a pharmacophore for development of new drugs due to its multifarious beneficial effects. The objective of the present study was to isolate and screen the resveratrol-producing endophytic fungi from different varieties of Vitis vinifera. A total of 53 endophytic fungi belonging to different fungal genera were isolated from the stem and leaf tissues of Vitis vinifera (merlot, wild, pinot noir, Shiraz, muscat) from different grape-producing locations of India. Only 29 endophytic fungal isolates exhibited a positive test for phenolics by phytochemical methods. The resveratrol obtained after ethyl acetate extraction was confirmed using standard molecule on thin layer chromatography (TLC) with a retention factor (Rf) of 0.69. The purified and standard resveratrol were visualized under UV light as a violet-colored spot. In HPLC analysis of the ethyl acetate extract of culture broth of 11 endophytic isolates, the highest resveratrol content was found in #12VVLPM (89.1 μg/ml) followed by #18VVLPM (37.3 μg/ml) and 193VVSTPM (25.2 μg/ml) exhibiting a retention time of 3.36 min which corresponded to the standard resveratrol. The resveratrol-producing isolates belong to seven genera viz. Aspergillus, Botryosphaeria, Penicillium, Fusarium, Alternaria, Arcopilus, and Lasiodiplodia, and using morphological and molecular methods, #12VVLPM was identified as Arcopilus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bradamante, S., Barenghi, L., & Villa, A. (2004). Cardiovascular protective effects of resveratrol. Cardiovascular Drug Reviews, 22, 169–188.

    Article  CAS  PubMed  Google Scholar 

  2. Jang, M. S., Cai, E. N., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C., & Pezzuto, J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218–220.

    Article  CAS  PubMed  Google Scholar 

  3. Saxena, S., & Srivastava, A. (2014). Resveratrol: biological activities and therapeutic potential. Journal of Pharmaceutical Technology, Research and Management, 2(2), 145–157.

    Article  Google Scholar 

  4. Wang, D. G., Liu, W. Y., & Chen, G. T. (2013). A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. Journal of Pharmaceutical Analysis, 3(4), 241–247.

    Article  CAS  PubMed  Google Scholar 

  5. Fremont, L. (2000). Biological effects of resveratrol. Life Sciences, 66(8), 663–673.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Q., Xu, J. F., Rottinghaus, G. E., Simonyi, A., Lubahn, D., Sun, G. Y., & Sun, A. Y. (2002). Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Research, 958(2), 439–447.

    Article  CAS  PubMed  Google Scholar 

  7. Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery, 5(6), 493–506.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, H. W., Song, Y. C., & Tan, R. X. (2006). Biology and chemistry of endophytes. Natural Product Reports, 23(5), 753–771.

    Article  CAS  PubMed  Google Scholar 

  9. Berman, A. Y., Motechin, R. A., Wiesenfeld, M. Y., & Holz, M. K. (2017). The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precision Oncology, 1(1), 35.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tassoni, A., Fornale, S., Franceschetti, M., Musiani, F., Michael, A. J., Perry, B., & Bagni, N. (2005). Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. The New Phytologist, 166(3), 895–905.

    Article  CAS  PubMed  Google Scholar 

  11. Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67(4), 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suryanarayanan, T. S., Thirunavukkarasu, N., Govindarajulu, M. B., Sasse, F., Jansen, R., & Murali, T. S. (2009). Fungal endophytes and bioprospecting. Fungal Biology Reviews, 23(1-2), 9–19.

    Article  Google Scholar 

  13. Schulz, B., Wanke, U., Draeger, S., & Aust, H. J. (1993). Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycological Research, 97(12), 1447–1450.

    Article  Google Scholar 

  14. Photita, W., Lumyong, S., Lumyong, P., & Hyde, K. D. (2001). Endophytic fungi of wild banana (Musa acuminata) at DosiSuthepPui National Park, Thailand. Mycological Research, 105(12), 1508–1513.

    Article  Google Scholar 

  15. Suryanarayanan, T. S., Venkatesan, G., & Murali, T. S. (2003). Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Current Science, 85(4), 489–492.

    Google Scholar 

  16. Gupta, Y. K., Briyal, S., & Chaudhary, G. (2002). Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacology Biochemistry and Behavior, 71(1-2), 245–249.

    Article  CAS  Google Scholar 

  17. Shi, J., Zeng, Q., Liu, Y., & Pan, Z. (2012). Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Applied Microbiology and Biotechnology, 95(2), 369–379.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Jumaily, E. F. A., Hamid, G. S., & Ali, K. F. (2014). Synthesis and total phenol content of new resveratrol derivative. American Journal of Advanced Drug Discovery, (2–3), 320–329.

  19. Park, J., & Boo, Y. C. (2013). Isolation of resveratrol from Vitis viniferae caulis and its potent inhibition of human tyrosinase. Evidence-Based Complementary and Alternative Medicine. Article ID 645257.

  20. Babu, S. K., Kumar, K. V., & Subbaraju, G. V. (2005). Estimation of trans-resveratrol in herbal extracts and dosage forms by high-performance thin layer chromatography. Chemical and Pharmaceutical Bulletin, 53(6), 691–693.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, X. W., Houbraken, J., Groenwald, J. Z., Meijer, M., Andersen, B., Nielsen, K. F., Crous, P. W., & Samson, R. A. (2016). Diversity and taxonomy of Chaetomium and Chaetomium-like fungi from indoor environments. Studies in Mycology, 84, 145–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Vol. 18, pp. 315–322).

    Google Scholar 

  23. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(10), 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez-Coloma, A., Cosoveanu, A., Cabrera, R., Gimenez, C., & Kaushik, N. (2016). Endophytic fungi and their bioprospection. In S. K. Deshmukh, J. K. Misra, J. P. Tewari, & T. Papp (Eds.), Fungi: applications and management strategies (pp. 14–31). CRC Press.

  26. Le Cocq, K., Gurr, S. J., Hirsch, P. R., & Mauchline, T. H. (2017). Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology, 18(3), 469–473.

    Article  PubMed  Google Scholar 

  27. Aly, A. H., Debbab, A., & Proksch, P. (2013). Fungal endophytes—secret producers of bioactive plant metabolites. An International Journal of Pharmaceutical Sciences, 68(7), 499–505.

    CAS  Google Scholar 

  28. Kharwar, R. N., Kumar, A., Verma, V. C., & Redman, R. S. (2015). Book chapter Ajit Varma (Endophytes). Endophytic fungi: better players of biodiversity, stress tolerance, host protection and antimicrobial production. A textbook of molecular biotechnology, pp 1033–1057.

  29. Hubbard, B. P., & Sinclair, D. A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences, 35(3), 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y., Nan, L., Liu, J., Yan, H., Zhang, D., & Han, X. (2016). Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon. Springer Plus, 5(1), 1029.

    Article  CAS  PubMed  Google Scholar 

  31. Langcake, P., & Pryce, R. J. (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 9(1), 77–86.

    Article  CAS  Google Scholar 

  32. González, V., & Tello, M. L. (2011). The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Diversity, 47(1), 29–42.

    Article  Google Scholar 

  33. Brum, M. C. P. D., Araujo, W. L. D., Maki, C. S., & Azevedo, J. L. D. (2012). Endophytic fungi from Vitis labrusca L. (‘Niagara Rosada’) and its potential for the biological control of Fusarium oxysporum. Genetics and Molecular Research, 11(4), 4187–4197.

    Article  CAS  PubMed  Google Scholar 

  34. Fisher, P. J., Anson, A. E., & Petrini, O. (1986). Fungal endophytes in Ulex europaeus and Ulex gallii. Transactions of the British Mycological Society, 86(1), 153–156.

    Article  Google Scholar 

  35. Roll-Hansen, F., & Roll-Hansen, H. (1979). Ascocoryne species in living stems of Picea species: a literature review. Forest Pathology, 9(5), 275–280.

    Article  Google Scholar 

  36. Rodriguez, R. J., White Jr., J. F., Arnold, A. E., & Redman, A. R. A. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182(2), 314–330.

    Article  CAS  PubMed  Google Scholar 

  37. Kernaghan, G., Mayerhofer, M., & Griffin, A. (2017). Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Canadian Journal of Microbiology, 63(7), 583–595.

    Article  CAS  PubMed  Google Scholar 

  38. Mostert, L., Crous, P. W., & Petrini, O. (2000). Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia, 52(1), 46–58.

    Google Scholar 

  39. Zeng, Q., Shi, J. L., & Liu, Y. L. (2012). Isolation and identification of a resveratrol-producing endophytic fungus from grape. Food Science, 33(13), 167–170.

    CAS  Google Scholar 

  40. Gond, S. K., Verma, V. C., Kumar, A., Kumar, V., & Kharwar, R. N. (2007). Study of endophytic fungal community from different parts of Aegle marmelos Correa (Rutaceae) from Varanasi (India). World Journal of Microbiology and Biotechnology, 23(10), 1371–1375.

    Article  Google Scholar 

  41. Kharwar, R. N., Maurya, A. L., Verma, V. C., Kumar, A., GOND, S. K., & Mishra, A. (2012). Diversity and antimicrobial activity of Endophytic fungal community isolated from medicinal plant Cinnamomum camphora. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82(4), 557–565.

    Article  Google Scholar 

  42. Márquez, S. S., Bills, G. F., Acuña, L. D., & Zabalgogeazcoa, I. (2010). Endophytic mycobiota of leaves and roots of the grass Holcuslanatus. Fungal Diversity, 41(1), 115–123.

    Article  Google Scholar 

  43. Musetti, R., Vecchione, A., Stringher, L., Borselli, S., Zulini, L., Marzani, C., D’Ambrosio, M., di Toppi, L. S., & Pertot, I. (2006). Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology, 96(7), 689–698.

    Article  CAS  PubMed  Google Scholar 

  44. Casieri, L., Hofstetter, V. A. L. É. R. I. E., Viret, O. L. I. V. I. E. R., & Gindro, K. A. T. I. A. (2009). Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathologia Mediterranea, 48(1), 73–83.

    Google Scholar 

  45. Bills, G. F., & Polishook, J. D. (1994). Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia, 86(2), 187–198.

    Article  Google Scholar 

  46. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

    CAS  PubMed  Google Scholar 

  47. Somrithipol, S. (2004). Coprophilous fungi. In E. B. G. Jones, M. Tanticharoen, & K. D. Hyde (Eds.), Thai fungal diversity (pp. 119–128). Thailand: BIOTEC.

    Google Scholar 

  48. Soytong, K., & Quimio, T. H. (1989). A taxonomic study on the Philippine species of Chaetomium. The Philippine agriculturist, 72(1), 59–72.

    Google Scholar 

  49. Brewer, D., Jerram, W. A., & Taylor, A. (1968). The production of cochliodinol and a related metabolite by Chaetomium species. Canadian Journal of Microbiology, 14(8), 861–866.

    Article  CAS  PubMed  Google Scholar 

  50. Kanokmedhakul, S., Kanokmedhakul, K., Phonkerd, N., Soytong, K., Kongsaeree, P., & Suksamrarn, A. (2001). Anti-mycobacterial anthraquinone-chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITLN0802. Planta Medica, 68(9), 834–836.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Biotechnology and TIFAC-CORE (Centre of Relevance and Excellence), Thapar Institute of Engineering & Technology, Patiala, Punjab, for providing the necessary infrastructure to carry out the research work.

Funding

The authors thank the Department of Biotechnology (DBT), Government of India, New Delhi, for financial assistance through Project No. BT/PR9094/NDB/39/378/2013

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjai Saxena.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwibedi, V., Saxena, S. Arcopilus aureus, a Resveratrol-Producing Endophyte from Vitis vinifera. Appl Biochem Biotechnol 186, 476–495 (2018). https://doi.org/10.1007/s12010-018-2755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2755-x

Keywords

Navigation