Skip to main content

Advertisement

Log in

Polyhydroxybutyrate (PHB) Synthesis by Spirulina sp. LEB 18 Using Biopolymer Extraction Waste

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The reuse of waste as well as the production of biodegradable compounds has for years been the object of studies and of global interest as a way to reduce the environmental impact generated by unsustainable exploratory processes. The conversion of linear processes into cyclical processes has environmental and economic advantages, reducing waste deposition and reducing costs. The objective of this work was to use biopolymer extraction waste in the cultivation of Spirulina sp. LEB 18, for the cyclic process of polyhydroxybutyrate (PHB) synthesis. Concentrations of 10, 15, 20, 25, and 30% (v/v) of biopolymer extraction waste were tested. For comparison, two assays were used without addition of waste, Zarrouk (SZ) and modified Zarrouk (ZM), with reduction of nitrogen. The assays were carried out in triplicate and evaluated for the production of microalgal biomass and PHB. The tests with addition of waste presented a biomass production statistically equal to ZM (0.79 g L−1) (p < 0.1). The production of PHB in the assay containing 25% of waste was higher when compared to the other cultivations, obtaining 10.6% (w/w) of biopolymer. From the results obtained, it is affirmed that the use of PHB extraction waste in the microalgal cultivation, aiming at the synthesis of biopolymers, can occur in a cyclic process, reducing process costs and the deposition of waste, thus favoring the preservation of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pauli, G. (2014). A economia azul: 10 anos, 100 inovações, 100000000 de empregos (1st ed.). Brookline: Paradigm Pubns.

    Google Scholar 

  2. Vonshak, A. (1997). Spirulina platensis (Arthrospira): physiology, cell-biology, and biotechnology. Abingdon: Taylor & Francis.

    Book  Google Scholar 

  3. Singh, A. K., Sharma, L., Mallick, N., & Mala, J. (2017). Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. Journal of Applied Phycology, 29(3), 1213–1232. https://doi.org/10.1007/s10811-016-1006-1.

    Article  CAS  Google Scholar 

  4. Pandey, A., Lee, D.-J., Chisti, Y., & Soccol, C. R. (2014). Biofuels from algae. San Diego: Elsevier B.V.

    Google Scholar 

  5. Troschl, C., Meixner, K., & Drosg, B. (2017). Cyanobacterial PHA production—review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering, 4(2), 26. https://doi.org/10.3390/bioengineering4020026.

    Article  Google Scholar 

  6. Fradinho, J. C., Oehmen, A., & Reis, M. A. M. (2014). Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): Substrate preferences and co-substrate uptake. Journal of Biotechnology, 185, 19–27. https://doi.org/10.1016/j.jbiotec.2014.05.035.

    Article  CAS  Google Scholar 

  7. Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012). Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology, 112, 234–241. https://doi.org/10.1016/j.biortech.2012.02.098.

    Article  CAS  Google Scholar 

  8. Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi journal of biological sciences, 19(3), 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005.

    Article  CAS  Google Scholar 

  9. da Silva Vaz, B., Costa, J. A. V., & Morais, M. G. (2016). CO2 biofixation by the cyanobacterium Spirulina sp. LEB 18 and the green alga Chlorella fusca LEB 111 grown using gas effluents and solid residues of thermoelectric origin. Applied Biochemistry and Biotechnology, 178(2), 418–429. https://doi.org/10.1007/s12010-015-1876-8.

    Article  Google Scholar 

  10. Singh, R., Bhaskar, T., & Balagurumurthy, B. (2014). Hydrothermal upgradation of algae into value-added hydrocarbons. Biofuels from Algae (pp. 235–260). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-59558-4.00011-5​.

  11. Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A., & Chang, J.-S. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191–198. https://doi.org/10.1016/j.biortech.2012.10.015.

    Article  CAS  Google Scholar 

  12. Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 39(2), 397–442. https://doi.org/10.1016/j.progpolymsci.2013.06.008.

    Article  Google Scholar 

  13. Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2015). Three-layer films based on wheat gluten and electrospun PHA. Food and Bioprocess Technology, 8(11), 2330–2340. https://doi.org/10.1007/s11947-015-1590-0.

    Article  CAS  Google Scholar 

  14. Fan, X., Jiang, Q., Sun, Z., Li, G., Ren, X., Liang, J., & Huang, T. S. (2015). Preparation and characterization of electrospun antimicrobial fibrous membranes based on polyhydroxybutyrate (PHB). Fibers and Polymers, 16(8), 1751–1758. https://doi.org/10.1007/s12221-015-5108-1.

    Article  CAS  Google Scholar 

  15. Park, J., Jin, H.-F., Lim, B.-R., Park, K.-Y., & Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technology, 101(22), 8649–8657. https://doi.org/10.1016/j.biortech.2010.06.142.

    Article  CAS  Google Scholar 

  16. Martins, R. G., Gonçalves, I. S., De Morais, M. G., & Costa, J. A. V. (2014). Bioprocess engineering aspects of biopolymer production by the cyanobacterium Spirulina strain LEB 18. International Journal of Polymer Science, 2014, 1–7. https://doi.org/10.1155/2014/895237.

    Article  Google Scholar 

  17. Coelho, V. C., Silva, C. K., Terra, A. L., Costa, J. A. V., & De Morais, M. G. (2015). Polyhydroxybutyrate production by Spirulina sp. LEB 18 grown under different nutrient concentrations. African Journal of Microbiology Research, 9(24), 1586–1594. https://doi.org/10.5897/AJMR2015.7530.

    Article  CAS  Google Scholar 

  18. Pelizer, L. H., Danesi, E. D. G., de O Rangel, C., Sassano, C. E., Carvalho, J. C. M., Sato, S., & Moraes, I. O. (2003). Influence of inoculum age and concentration in Spirulina platensis cultivation. Journal of Food Engineering, 56(4), 371–375. https://doi.org/10.1016/S0260-8774(02)00209-1.

    Article  Google Scholar 

  19. Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173. https://doi.org/10.1016/j.enconman.2006.12.011.

    Article  Google Scholar 

  20. Zarrouk, C. (1966). Contribution à l’étude d’une cyanophycée influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch et Gardner) Geitler. Paris: University of Paris.

    Google Scholar 

  21. Reichert, C. C., Reinehr, C. O., & Costa, J. A. V. (2006). Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor. Brazilian Journal of Chemical Engineering, 23(1), 23–28. https://doi.org/10.1590/S0104-66322006000100003.

    Article  Google Scholar 

  22. Carmouze, J. P. (1994). O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. São Paulo: Edgard Blücher LTDA.

    Google Scholar 

  23. Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (2008). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid 1. Communications in Soil Science and Plant Analysis, 6(1), 71–80. https://doi.org/10.1080/00103627509366547.

    Article  Google Scholar 

  24. Bailey, J. E., & Ollis, D. F. (1986). Biochemical engineering fundamentals (2nd ed.). Michigan: McGraw-Hill.

  25. Schimidell, W., de A Lima, U., Aquarone, E., & Borzani, W. (2001). Biotecnologia Industrial. São Paulo: Blucher.

    Google Scholar 

  26. Brandl, H., Gross, R. A., Lenz, R. W., & Fuller, R. C. (1988). Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential applications as biodegradable polyesters. Applied and Environmental Microbiology, 54(8), 1977–1982 Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=202789&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  27. Zhang, Y.-Z., Liu, G.-M., Weng, W.-Q., Ding, J.-Y., & Liu, S.-J. (2015). Engineering of Ralstonia eutropha for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Journal of Biotechnology, 195, 82–88. https://doi.org/10.1016/j.jbiotec.2014.12.014.

    Article  CAS  Google Scholar 

  28. Lafferty, R. M., & Heinzle, E. (1978). Cyclic carbonic acid esters as solvents for poly-(β-hydroxybutyric acid. Canadian: Google Patents. Retrieved from http://www.google.com/patents/US4101533

  29. Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., et al. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology, 28(7), 371–380. https://doi.org/10.1016/j.tibtech.2010.04.004.

    Article  CAS  Google Scholar 

  30. Hille, R., Fagan, M., Bromfield, L., & Pott, R. (2013). A modified pH drift assay for inorganic carbon accumulation and external carbonic anhydrase activity in microalgae. Journal of Applied Phycology, 26(1), 377–385. https://doi.org/10.1007/s10811-013-0076-6.

    Article  Google Scholar 

  31. Carvalho, L. F., Oliveira, M. S., & Alberto, J. C. V. (2014). Evaluation of the influence of nitrogen and phosphorus nutrients in the culture and production of biosurfactants by microalga Spirulina. Int. Journal of Engineering Research and Applications, 4(6), 90–98.

    Google Scholar 

  32. Richmond, A. (Ed.). (2007). Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Publishing Ltd. https://doi.org/10.1002/9780470995280.

  33. Clarke, K. G. (2013). Bioprocess engineering, an introductory engineering and life science approach (1st ed.). Philadelphia: Woodhead Publishing Limited.

  34. Allen, M. M., & Smith, A. J. (1969). Nitrogen chlorosis in blue-green algae. Archiv für Mikrobiologie, 69(2), 114–120. https://doi.org/10.1007/BF00409755.

    Article  CAS  Google Scholar 

  35. Michelon, W., Da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Prandini, J. M., & Soares, H. M. (2016). Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Applied Biochemistry and Biotechnology, 178(7), 1407–1419. https://doi.org/10.1007/s12010-015-1955-x.

    Article  CAS  Google Scholar 

  36. Jau, M. H., Yew, S. P., Toh, P. S. Y., Chong, A. S. C., Chu, W. L., Phang, S. M., et al. (2005). Biosynthesis and mobilization of poly(3-hydroxybutyrate) [P(3HB)] by Spirulina platensis. International Journal of Biological Macromolecules, 36(3), 144–151. https://doi.org/10.1016/j.ijbiomac.2005.05.002.

    Article  CAS  Google Scholar 

  37. Singh, A. K., & Mallick, N. (2017). Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiology Letters, 364(20), 1–13. https://doi.org/10.1093/femsle/fnx189.

    Article  Google Scholar 

  38. Hong, K., Sun, S., Tian, W., Chen, G. Q., & Huang, W. (1999). A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transform infrared spectroscopy. Applied Microbiology and Biotechnology, 51(4), 523–526. https://doi.org/10.1007/s002530051427.

    Article  CAS  Google Scholar 

  39. Kansiz, M., Billman-Jacobe, H., & McNaughton, D. (2000). Quantitative determination of the biodegradable polymer poly(beta-hydroxybutyrate) in a recombinant Escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics. Applied and Environmental Microbiology, 66(8), 3415–3420. https://doi.org/10.1128/AEM.66.8.3415-3420.2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Greque de Morais.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, C.K., Costa, J.A.V. & de Morais, M.G. Polyhydroxybutyrate (PHB) Synthesis by Spirulina sp. LEB 18 Using Biopolymer Extraction Waste. Appl Biochem Biotechnol 185, 822–833 (2018). https://doi.org/10.1007/s12010-017-2687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2687-x

Keywords

Navigation