Skip to main content

Advertisement

Log in

Valproic Acid Promotes Apoptosis and Cisplatin Sensitivity Through Downregulation of H19 Noncoding RNA in Ovarian A2780 Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cisplatin resistance is one of the main limitations in the treatment of ovarian cancer, which is partly mediated by long noncoding RNAs (lncRNAs). H19 is a lncRNA involving in cisplatin resistance in cancers. Valproic acid (VPA) is a commonly used drug for clinical treatment of seizure disorders. In addition, this drug may display its effects through regulation of noncoding RNAs controlling gene expression. The aim of the present study was the investigation of VPA treatment effect on H19 expression in ovarian cancer cells and also the relation of the H19 levels with apoptosis and cisplatin resistance. Briefly, treatment with VPA not only led to significant increase in apoptosis rate, but also increased the cisplatin sensitivity of A2780/CP cells. We found that following VPA treatment, the expression of H19 and EZH2 decreased, but the expression of p21 and PTEN increased significantly. To investigate the involvement of H19 in VPA-induced apoptosis and cisplatin sensitivity, H19 was inhibited by a specific siRNA. Our results demonstrate that H19 knockdown by siRNA induced apoptosis and sensitized the A2780/CP cells to cisplatin-induced cytotoxicity. These data indicated that VPA negatively regulates the expression of H19 in ovarian cancer cells, which subsequently leads to apoptosis induction, cell proliferation inhibition, and overwhelming to cisplatin resistance. The implication of H19→EZH2→p21/PTEN pathway by VPA treatment suggests that we could repurpose an old drug, valproic acid, as an effective drug for treatment of ovarian cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Altekruse, S. F., Kosary, C. L., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D. R., Chen, H. S., Feuer, E. J., & Cronin, K. A. (2015). SEER Cancer Statistics Review, 1975–2012. Bethesda: National Cancer Institute.

    Google Scholar 

  2. Zheng, Z. G., Xu, H., Suo, S. S., Xu, X. L., Ni, M. W., Gu, L. H., Chen, W., Wang, L. Y., Zhao, Y., Tian, B., & Huab, Y. J. (2016). The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer. Sci Rep, 19, 26093.

    Article  CAS  Google Scholar 

  3. Zhao, J. L., Zhao, J., & Jiao, H. J. (2014). Synergistic growth-suppressive effects of quercetin and cisplatin on HepG2 human hepatocellular carcinoma cells. Appl Biochem Biotechnol, 172, 784–791.

    Article  CAS  PubMed  Google Scholar 

  4. Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., Castedo, M., & Kroemer, G. (2012). Molecular mechanisms of cisplatin resistance. Oncogene, 31, 1869–1883.

    Article  CAS  PubMed  Google Scholar 

  5. Pan, J.J., Xie, X.J., Li, X., & Chen, W. (2015). Long non-coding RNAs and drug resistance Asian Pac J Cancer Prev, 16, 8067–73.

  6. Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E., & Tycko, B. (1993). Tumour-suppressor activity of H19 RNA. Nature, 365, 764–767.

    Article  CAS  PubMed  Google Scholar 

  7. Tsang, W. P., & Kwok, T. T. (2007). Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene, 26, 4877–4881.

    Article  CAS  PubMed  Google Scholar 

  8. Matouk, I. J., Raveh, E., Abu-lail, R., Mezan, S., Gilon, M., Gershtain, E., Birman, T., Gallula, J., Schneider, T., Barkali, M., Richler, C., Fellig, Y., Sorin, V., Hubert, A., Hochberg, A., & Czerniak, A. (2014, 1843). Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta, 1414–1426.

  9. Luo, M., Li, Z., Wang, W., Zeng, Y., Liu, Z., & Qiu, J. (2013). Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett, 333, 213–221.

    Article  CAS  PubMed  Google Scholar 

  10. Li, X., Lin, Y., Yang, X., Wu, X., & He, X. (2016). Long noncoding RNA H19 regulates EZH2 expression by interacting with miR-630 and promotes cell invasion in nasopharyngeal carcinoma. BBRC, 473, 913–919.

    CAS  PubMed  Google Scholar 

  11. Yamaguchi, H., & Hung, M. C. (2014). Regulation and role of EZH2 in cancer. Cancer Res Treat, 46, 209–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan, T., Jiang, S., Chung, N., Alikhan, A., Ni, C., Lee, C. C., & Hornyak, T. J. (2011). EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol Cancer Res, 9, 418–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishioka, C., Ikezoe, T., Yang, J., Udaka, K., & Yokoyama, A. (2011). Imatinib causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins. Blood Cancer J, 1, 1–9.

    Article  Google Scholar 

  14. Tsai, C., Leslie, J. S., Franko-Tobin, L. G., Prasnal, M. C., Yang, T., Vienna Mackey, L., Fuselier, J. A., Coy, D. H., Liu, M., Yu, C., & Sun, L. (2013). Valproic acid suppresses cervical cancer tumor progression possibly via activating Notch1 signaling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II. Arch Gynecol Obstet, 288, 393–400.

    Article  CAS  PubMed  Google Scholar 

  15. Thotala, D., Karvas, R. M., Engelbach, J. A., Garbow, J. R., Hallahan, A. N., DeWees, T. A., Laszlo, A., & Hallahan, D. E. (2015). Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells. Oncotarget, 6, 35004–35022.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Z., Convertini, P., Shen, M., Xu, X., Lemoine, F., Grange, P., Andres, D. A., & Stamm, S. (2013). Valproic acid causes proteasomal degradation of DICER and influences miRNA expression. PLOS ONE, 8, e82895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dinesh, M., Deepika, S., HarishKumar, R., & Selvaraj, C. I. Evaluation of Octyl-β-D-Glucopyranoside (OGP) for cytotoxic, hemolytic, thrombolytic, and antibacterial activity. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-017-2661-7.

  18. Jami, M. S., Pal, R., Hoedt, E., Neubert, T. A., Larsen, J. P., & Moller, S. G. (2014). Proteome analysis reveals roles of L-DOPA in response to oxidative stress in neurons. BMC Neurosci, 15, 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin, Z. J. (2004). About the evaluation of drug combination. Acta Pharmacol Sin, 25, 146–147.

    CAS  PubMed  Google Scholar 

  20. Liu, E., Liu, Z. H., Zhou, Y., Mi, R., & Wang, D. (2015). Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways. Int J Clin Exp Med, 8, 20565–20572.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, F., Bi, J., Xue, X., Zheng, L., Zhi, K., Hua, J., & Fang, G. (2012). Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J, 279, 3159–3165.

    Article  CAS  PubMed  Google Scholar 

  22. Li, H., Yu, B., Li, J., Su, L., Yan, M., Zhu, Z., & Liu, B. (2014). Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget, 5, 2318–2329.

    PubMed  PubMed Central  Google Scholar 

  23. Jiang, P., Wang, P., Sun, X., Yuan, Z., Zhan, R., Ma, Z., & Li, W. (2016). Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy. Onco Targets Ther, 9, 3501–3509.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Q., Cheng, N., Li, X., Pan, H., Li, C., Ren, S. H., Su, C. H., Cai, W., Zhao, C. H., Zhang, L., & Zhou, C. (2017). Correlation of long non-coding RNA H19 expression with cisplatin-resistance and clinical outcome in lung adenocarcinoma. Oncotarget, 8, 2558–2567.

    PubMed  Google Scholar 

  25. Erlich, R. B., Rickwood, D., Coman, W. B., Saunders, N. A., & Guminski, A. (2009). Valproic acid as a therapeutic agent for head and neck squamous cell carcinomas. Cancer Chemother Pharmacol, 63, 381–389.

    Article  CAS  PubMed  Google Scholar 

  26. Grabarska, A., Dmoszynska-Graniczka, M., Jeleniewicz, W., Kiełbus, M., Nowosadzka, E., Rivero-Muller, A., Polberg, K., & Stepulak, A. (2014). Valproic acid suppresses growth and enhances cisplatin cytotoxicity to larynx cancer cells. Head Neck Oncol, 6, 1–11.

  27. Valentini, A., Gravina, P., Federici, G., & Bernardini, S. (2007). Valproic acid induces apoptosis, p16INK4A upregulation and sensitization to chemotherapy in human melanoma cells. Cancer Biol Ther, 6, 185–191.

    Article  CAS  PubMed  Google Scholar 

  28. Oikawa, H., Goh, W. W., Lim, V. K., Wong, L., & Sng, J. C. (2015). Valproic acid mediates miR-124 to down-regulate a novel protein target, GNAI1. Neurochem Int, 91, 62–71.

    Article  CAS  PubMed  Google Scholar 

  29. Oikawa, H., & Sng, J.C.G. (2016). Valproic acid as a microRNA modulator to promote neurite outgrowth, Neural Regen Res, 11, 1564–65.

  30. Hao, Y., Wang, G., Lin, C. H., Li, D., Ji, Z. H., Gao, F., Li, Z., Liu, D., & Wang, D. (2017). Valproic acid induces decreased expression of H19 promoting cell apoptosis in A549 Cells. DNA Cell Biol, 36, 1–8.

    Article  CAS  Google Scholar 

  31. Zhou, W., Wang, J., Man, W. Y., Zhang, Q. W., & Xu, W. G. (2015). SiRNA silencing EZH2 reverses cisplatin-resistance of human non-small cell lung and gastric cancer cells. Asian Pac J Cancer Prev, 16, 2425–2430.

    Article  PubMed  Google Scholar 

  32. Chen, J., Li, J., Han, Q., Sun, Z., Wang, J., Wang, S., & Zhao, R. C. (2012). Enhancer of zeste homolog 2 is overexpressed and contributes to epigenetic inactivation of p21 and phosphatase and tensin homolog in B-cell acute lymphoblastic leukemia. Exp Biol Med, 237, 1110–1116.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would also like to acknowledge the staffs at the Cellular and Molecular Research Center for their sincere cooperation. Thank you for funding from the University of Sistan and Baluchestan, Zahedan, Iran (in the purchase of valproic acid and cisplatin drugs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Teimori.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajadpoor, Z., Amini-Farsani, Z., Teimori, H. et al. Valproic Acid Promotes Apoptosis and Cisplatin Sensitivity Through Downregulation of H19 Noncoding RNA in Ovarian A2780 Cells. Appl Biochem Biotechnol 185, 1132–1144 (2018). https://doi.org/10.1007/s12010-017-2684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2684-0

Keywords

Navigation