Skip to main content
Log in

Comparative Metabolomic Analysis of the Green Microalga Chlorella sorokiniana Cultivated in the Single Culture and a Consortium with Bacteria for Wastewater Remediation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Co-culture of microalgae with many types of bacteria usually comes out with significant different treatment efficiencies for COD, nitrogen, and phosphorus in wastewater remediation, compared with the single culture. In order to understand the mechanism behind, a comparative experiment was designed in this study, using the green microalgae species Chlorella sorokiniana in the single culture and a consortium with a bacterium, Pseudomonas H4, for nutrient removal. Comparative metabolome profile analysis was conducted to reveal the Chlorella cell responses to the synergistic growth with the bacteria, and possible relations between the metabolic regulation of microalgae and the nutrient degradation were discussed. The detectable differential metabolites of Chlorella belonged to several classes, including carbohydrates, fatty acids, amino acids, phosphates, polyols, etc. The orthogonal partial least squares discriminant analysis (OPLS-DA) model of the identified metabolites suggests the metabolism in this alga was significantly affected by the bacteria, corresponding to different treatment behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, L., Liu, J., Zhao, Q., Wei, W., & Sun, Y. (2016). Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. Bioresource Technology, 211, 1–5.

    Article  CAS  Google Scholar 

  2. Hatamoto, M., Ohtsuki, K., Maharjan, N., Ono, S., Dehama, K., Sakamoto, K., Takahashi, M., & Yamaguchi, T. (2015). Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment. Bioresource Technology, 204, 171.

    Article  Google Scholar 

  3. Al-Awadhi, H., Al-Hasan, R. H., Sorkhoh, N. A., Salamah, S., & Radwan, S. S. (2003). Establishing oil-degrading biofilms on gravel particles and glass plates. International Biodeterioration & Biodegradation, 51, 181–185.

    Article  CAS  Google Scholar 

  4. De-Bashan, L. E., Moreno, M., Hernandez, J. P., & Bashan, Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research, 36, 2941–2948.

    Article  CAS  Google Scholar 

  5. Di Caprio, F., Altimari, P., & Pagnanelli, F. (2015). Integrated biomass production and biodegradation of olive mill wastewater by cultivation of Scenedesmus sp. Algal Research, 9, 306–311.

    Article  Google Scholar 

  6. Tang, C. C., Zuo, W., Tian, Y., Sun, N., Wang, Z. W., & Zhang, J. (2016). Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors. Bioresource Technology, 222, 156–164.

    Article  CAS  Google Scholar 

  7. Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2016). Wastewater polishing by consortia of Chlorella vulgaris and activated sludge native bacteria. Journal of Cleaner Production, 133, 348–357.

    Article  Google Scholar 

  8. Hodaifa, G., Martínez, M. E., & Sánchez, S. (2010). Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater. Biotechnology and Bioprocess Engineering, 14, 854–860.

    Article  Google Scholar 

  9. Roy, K. D., Marzorati, M., Abbeele, P. V. D., Wiele, T. V. D., & Boon, N. (2014). Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environmental Microbiology, 16, 1472.

    Article  Google Scholar 

  10. Brenner, K., You, L., & Arnold, F. H. (2008). Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology, 26, 483–489.

    Article  CAS  Google Scholar 

  11. Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N., & Silver, P. A. (2015). Better together: engineering and application of microbial symbioses. Current Opinion in Biotechnology, 36, 40.

    Article  CAS  Google Scholar 

  12. Goecke, F., Labes, A., Wiese, J., & Imhoff, J. F. (2010). Chemical interactions between marine macroalgae and bacteria. Marine Ecology Progress Series, 409, 267–299.

    Article  CAS  Google Scholar 

  13. Maza-Marquez, P., Gonzalez-Martinez, A., Martinez-Toledo, M. V., Fenice, M., Lasserrot, A., & Gonzalez-Lopez, J. (2016). Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor. Environmental Science and Pollution Research International, 24(1), 527–538.

  14. Alcantara, C., Fernandez, C., Garcia-Encina, P. A., & Munoz, R. (2015). Mixotrophic metabolism of Chlorella sorokiniana and algal-bacterial consortia under extended dark-light periods and nutrient starvation. Applied Microbiology and Biotechnology, 99, 2393–2404.

    Article  CAS  Google Scholar 

  15. Bolling, C., & Fiehn, O. (2005). Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiology, 139, 1995–2005.

    Article  Google Scholar 

  16. Lu, N., Chen, J. H., Wei, D., Chen, F., & Chen, G. (2016). Global metabolic regulation of the snow alga Chlamydomonas nivalis in response to nitrate or phosphate deprivation by a metabolome profile analysis. International Journal of Molecular Sciences, 17(5), 694.

  17. Ito, T. (2013). Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics, 9, 178–187.

    Article  CAS  Google Scholar 

  18. Renberg, L., Johansson, A. I., Shutova, T., Stenlund, H., Aksmann, A., Raven, J. A., Gardestrom, P., Moritz, T., & Samuelsson, G. (2010). A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiology, 154, 187–196.

    Article  CAS  Google Scholar 

  19. Bielecka, M., Watanabe, M., Morcuende, R., Scheible, W. R., Hawkesford, M. J., Hesse, H., & Hoefgen, R. (2014). Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis. Frontiers in Plant Science, 5, 805.

    Google Scholar 

  20. Willamme, R., Alsafra, Z., Arumugam, R., Eppe, G., Remacle, F., Levine, R. D., & Remacle, C. (2015). Metabolomic analysis of the green microalga Chlamydomonas reinhardtii cultivated under day/night conditions. Journal of Biotechnology, 215, 20–26.

    Article  CAS  Google Scholar 

  21. Wilhelm, C., & Selmar, D. (2011). Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. Journal of Plant Physiology, 168, 79–87.

    Article  CAS  Google Scholar 

  22. Newman, S., & Reddy, K. R. (1993). Alkaline phosphatase activity in the sediment-water column of a hypereutrophic lake. Journal of Environmental Quality, 22, 832–838.

    Article  CAS  Google Scholar 

  23. Wu, S., Li, X., Yu, J., & Wang, Q. (2012). Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Bioresource Technology, 123, 184–188.

    Article  CAS  Google Scholar 

  24. Flavigny, R. M., & Cordruwisch, R. (2015). Organic carbon removal from wastewater by a PHA storing biofilm using direct atmospheric air contact as oxygen supply. Bioresource Technology, 187, 182–188.

    Article  CAS  Google Scholar 

  25. Smith, R. T., Bangert, K., Wilkinson, S. J., & Gilmour, D. J. (2015). Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass and Bioenergy, 82, 73–86.

    Article  CAS  Google Scholar 

  26. Suggett, D. J., Warner, M. E., Smith, D. J., Davey, P., Hennige, S., & Baker, N. R. (2008). Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. Journal of Phycology, 44, 948–956.

    Article  CAS  Google Scholar 

  27. Hu, Q., Guterman, H., & Richmond, A. (1996). Physiological characteristics of spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities. Journal of Phycology, 32, 1066–1073.

    Article  Google Scholar 

  28. Kouzuma, A., & Watanabe, K. (2015). Exploring the potential of algae/bacteria interactions. Current Opinion in Biotechnology, 33, 125–129.

    Article  CAS  Google Scholar 

  29. Lalibertè, G., & Noüie, J. (1993). Auto-, hetero-, and mixotrophic growth of Chlamydomonas humicola (cmloroimiyckak) on acetate1. Journal of Phycology, 29, 612–620.

    Article  Google Scholar 

  30. Anderson, I. C., Mcglathery, K. J., & Tyler, A. C. (2003). Microbial mediation of ‘reactive’ nitrogen transformations in a temperate lagoon. Marine Ecology Progress, 246, 73–84.

    Article  CAS  Google Scholar 

  31. Comeau, Y., Hall, K. J., Hancock, R. E. W., & Oldham, W. K. (1986). Biochemical model for enhanced biological phosphorus removal. Water Research, 20, 1511–1521.

    Article  CAS  Google Scholar 

  32. Cheng, J.-S., Niu, Y.-H., Lu, S.-H., & Yuan, Y.-J. (2012). Metabolome analysis reveals ethanolamine as potential marker for improving lipid accumulation of model photosynthetic organisms. Journal of Chemical Technology & Biotechnology, 87, 1409–1418.

    Article  CAS  Google Scholar 

  33. Gerin, S., Leprince, P., Sluse, F. E., Franck, F., & Mathy, G. (2016). New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon, and inorganic nitrogen in Chlamydomonas reinhardtii. Frontiers in Plant Science, 7, 1158.

    Article  Google Scholar 

  34. Johnson, X., & Alric, J. (2012). Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii. The Journal of Biological Chemistry, 287, 26445–26452.

    Article  CAS  Google Scholar 

  35. Masclaux-Daubresse, C., Reisdorf-Cren, M., Pageau, K., Lelandais, M., Grandjean, O., Kronenberger, J., Valadier, M. H., Feraud, M., Jouglet, T., & Suzuki, A. (2006). Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiology, 140, 444–456.

    Article  CAS  Google Scholar 

  36. Lai, J., Yu, Z., Song, X., Cao, X., & Han, X. (2011). Responses of the growth and biochemical composition of Prorocentrum donghaiense to different nitrogen and phosphorus concentrations. Journal of Experimental Marine Biology and Ecology, 405, 6–17.

    Article  CAS  Google Scholar 

  37. Tomii, K., & Kanehisa, M. (1998). A comparative analysis of ABC transporters in complete microbial genomes. Genome Research, 8, 1048–1059.

    Article  CAS  Google Scholar 

  38. Roy, S. S., Sen, G., & Biswas, T. (2005). Role of sulfhydryl groups in band 3 in the inhibition of phosphate transport across erythrocyte membrane in visceral leishmaniasis. Archives of Biochemistry and Biophysics, 436, 121–127.

    Article  CAS  Google Scholar 

  39. Seddon, P., Bara, A., Lasserson, T.J., & Ducharme, F.M. (2009). The effects of oral xanthines (e.g. theophylline) for chronic asthma in children. John Wiley & Sons Ltd for the Cochrane Collaboration. No.: CD002885. doi: 10.1002/14651858.CD002885.pub2.

  40. Coumans, A. E., & Hensen, E. J. M. (2017). A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. Applied Catalysis B: Environmental, 201, 290–301.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (No. 51208305), Science and Technology Commission of Shanghai Municipality Program (No. 14DZ1203800), and Natural Science Foundation of Shanghai (No. 16ZR1440000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhao, Q., Wang, L. et al. Comparative Metabolomic Analysis of the Green Microalga Chlorella sorokiniana Cultivated in the Single Culture and a Consortium with Bacteria for Wastewater Remediation. Appl Biochem Biotechnol 183, 1062–1075 (2017). https://doi.org/10.1007/s12010-017-2484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2484-6

Keywords

Navigation